進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2406201914412300
論文名稱(中文) 大氣中戴奧辛/口夫喃之雲霧水掃除研究
論文名稱(英文) A Study on PCDD/Fs Scavenged by Cloud/Fog Water
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳冠宇
研究生(英文) Guan-Yu Chen
學號 P56061112
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 指導教授-吳義林
共同指導教授-李文智
口試委員-王琳麒
口試委員-郭益銘
口試委員-楊錫賢
中文關鍵字 戴奧辛  呋喃  雲霧水  掃除係數  掃除比率 
英文關鍵字 PCDD/Fs  Cloud/Fog Water  Scavenging Coefficient  Scavenging Ratio 
學科別分類
中文摘要 降水為大氣中汙染物的重要掃除機制之一,透過多種不同的形式發揮作用,但過往文獻在探討戴奧辛(PCDDs)和呋喃(PCDFs)掃除時,大多都只探討在雨中所去除的部分,關於PCDD/Fs在雲霧水中掃除的文獻目前仍無。而若與雨水相比,雲霧水中的液滴的粒徑較小,因此具有相對大的表面積,將更易補集大氣中的持久性有機汙染物(POPs),所以本研究藉由採樣和分析來探討PCDD/Fs在雲霧水中的掃除率。
本研究於2018及2019年東北季風期間分別在竹子山及富貴角進行雲霧水和大氣中POPs之採樣,2 018年雲霧水採樣時間為1月17至2月27,過程中僅發生了三次事件,但事件持續時間平均長達154小時,遠高於2019年雲霧水事件平均持續時間。2019年採樣期間有採集樣品的共八次事件,這八個事件持續時間從9個小時到58個小時不等,平均約為27個小時。另外在富貴角的大氣採樣,為利用一高流量大氣採樣儀器(Shibata)進行,2019年大氣採樣期間為1月14日到1月28日,每48個小時更換一次濾紙及聚氨酯泡沫(PUF),總採樣體積都將超過1,000m3。
2019年主動式採樣器所採得雲霧水樣品之PCDD/F-WHO-TEQ濃度(平均值為1.35±1.80 pg WHO-TEQ L-1)高於被動式採樣器所採得樣品之PCDD/F-WHO-TEQ濃度(平均值為0.769±1.23 pg WHO-TEQ L-1),其原因推測與被動式採樣器採樣過程中可能參雜些許雨水有關。接著將計算大氣中PCDD/Fs經由雲霧水之掃除效果,但由於2018並沒有採集大氣中PCDD/Fs,因此必須藉由雲霧水中之PCDD/Fs加以推估計算而得,為了證明氣固相推估的可行性,我們以2019年雲霧水和大氣中之PCDD/Fs做為參考,發現2019年由氣固相推估出的模擬數據(平均為0.128 pg m-3)確實和真實大氣中的PCDD/F濃度(平均為0.173 pg m-3)十分接近,因此我們將藉由2018年雲霧水中之PCDD/Fs加以推估計算而得到該年大氣中之總PCDD/F濃度(平均為0.0853 pg m-3)。
大氣中PCDD/Fs雲霧水之掃除效果可分成掃除係數(C-cloud/C-air)及掃除率(C-cloud/C-air *LWC)作探討,從掃除係數的比較可發現,被動式採樣器所得PCDD/Fs之毒性掃除係數(平均為2.24×105±2.96×105)相較於主動式採樣器(平均4.20×105±3.60×105)皆低了將近二分之一,由於被動式雲霧水採樣器所收集之雲霧水樣品亦包含雨水於其中,故雨水對PCDD/Fs之掃除率亦會有所貢獻;而2018年被動式採樣器所得PCDD/Fs之毒性掃除係數(平均為3.20×105±3.26×105)將高於2019年的數值,其原因則與2018年事件期間較豐富的雲霧水有關,此外也可觀察到雲霧水對於PCDD/Fs的掃除係數將隨著PCDD/F congeners的氯數增加而上升的現象。為了更加瞭解雲霧水對PCDD/F掃除係數的特性,比較發現雲霧水對於PCDD/F的掃除係數確實高於雨水的PCDD/F掃除係數(平均為1.9×105),且與多環芳香烴(PAHs)在雲霧水中的掃除係數相比發現後者相對較低(介於103~105)。若從掃除率來看,被動式採樣器所得PCDD/Fs之毒性掃除率(平均則為0.063±0.065)將高於主動式採樣器所得之值(平均則為0.035±0.023),其主要影響原因為被動式採樣器採集較多的雲霧水及雨水將更易捕集大氣中PCDD/Fs;而2018年被動式採樣器所得PCDD/Fs之毒性掃除率(平均為0.254±0.236)將高於2019年的數值,其原因則與2018年事件期間較豐富的雲霧水有關。接著,將其與微量元素在雲霧水中的掃除率相比,相比之下發現後者相對較高(約0.11-0.56),二者之間掃除率的差別推測與溶解度有關,微量元素的水溶性遠大於PCDD/Fs,導致微量元素較容易被雲霧水所掃除。透過與雲霧水對其他汙染物掃除率的比較,可以得知雲霧水對於PCDD/Fs的掃除確實是一重要去除大氣中汙染物的機制。
英文摘要 Precipitation is one of the important sedimentation mechanisms of pollutants in the atmosphere, but the literature of Dibenzo-p-dioxin and Dibenzofuran (PCDD/Fs) deposition in cloud/fog water is still absent. However, droplets of cloud/fog water are much smaller and have a much higher surface-to-volume ratio compared to rain which might make it more efficiency in PCDD/F sedimentation. Therefore, we investigate PCDD/Fs scavenged by cloud/fog water in this study in order to figure it out.
Sequential cloud/fog water samples were collected for each cloud event during January 17th to February 24th, 2018 and January 15th to February 16th, 2019. The cloud water samples were combined into one to reach 20 L for PCDD/F measurement due to the low solubility of PCDD/Fs in water. There were 3 and 11 events happened during collecting period in 2018 and 2019, respectively, but only 8 events were analyzed in 2019 because of too short cloud/fog water event period or too low liquid water content. On the other hand, the ambient air sample were collected during January 14th and 28th, 2019, with 7 samples. Total PCDD/F-WHO-TEQ concentration collected by active fog collector in cloud/fog water samples in 2019 (mean: 1.35±1.80 pg WHO-TEQ L-1) averaged higher than the values of passive one (mean: 0.769±1.23 pg WHO-TEQ L-1). There might mix with a little bit rain in cloud/fog water sample collected by passive fog collector, which made liquid water content (LWC) for passive fog collector larger than LWC for active one.
Compared to scavenging coefficient of PCDD/F-WHO-TEQ of passive fog collector (mean: 2.24×105±2.96×105), scavenging coefficient (C-cloud/C-air) of PCDD/F-WHO-TEQ of active one was larger (mean: 4.20×105±3.60×105) in 2019. The cause of PCDD/F scavenging coefficient difference contributed to cloud/fog water sample mixing with rain which collected by passive fog collector. Besides, scavenging coefficient of PCDD/F-WHO-TEQ of passive fog collector in 2018 (mean: 3.20×105±3.26×105) averaged higher than the results of passive one in 2019 due to rich cloud and fog during collecting period in 2018. Then, compared to PCDD/F scavenging coefficient of precipitations (around 1.9×105), the scavenging coefficient of cloud/fog water in 2019 was larger. On the other hand, compared to scavenging ratio of PCDD/F-WHO-TEQ of passive fog collector (mean: 0.056±0.074), scavenging ratio (C-cloud/C-air *LWC) of PCDD/F-WHO-TEQ of active one was lower (mean: 0.033±0.029) in 2019. The reason might connect with higher LWC of passive fog collector where PCDD/Fs in the atmosphere could be scavenged by more cloud/fog water and rain. Besides, scavenging ratio of PCDD/F-WHO-TEQ of passive fog collector in 2018 (mean: 0.254±0.236) averaged higher than the results of passive one in 2019 due to higher LWC and rich cloud and fog during collecting period in 2018. Additionally, PCDD/F scavenging ratio of cloud/fog water was smaller than that of trace elements (ranged from 0.11- 0.56) since trace elements are easier to dissolve in water than PCDD/Fs. In conclusion, the obtained scavenging ratios of PCDD/Fs by cloud/fog water are crucial for clarifying the effect of cloud/fog water on the deposition of atmospheric PCDD/Fs.
論文目次 摘要 I
Abstract III
List of Tables VIII
List of Figures X
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Cloud and Fog 4
2.1.1 Physical Characteristics of Cloud and Fog 4
2.1.2 Cloud Deposition 5
2.1.3 Cloud Formation in Northeast Monsoon in Taiwan 6
2.2 Composition of Cloud/Fog Water 7
2.2.1 Chemical Composition of Cloud/Fog Water 7
2.2.2 Organic Matter in Cloud/Fog Water 8
2.2.3 Toxic Pollutants Found in Cloud/Fog Water 9
2.3 Dry Deposition 11
2.3.1 Gas-particle partitioning 11
2.3.2 Dry Deposition Process 12
2.4 Wet Deposition 14
2.4.1 Liquid Water Content 14
2.4.2 Scavenging Ratio 14
2.4.3 Wet Deposition Process 15
2.5 PCDD/Fs 17
2.5.1 Chemical and Physical Characteristics of PCDD/Fs 17
2.5.2 Sources of PCDD/Fs 21
2.6 PCDD/Fs Impact on Human Health 23
2.6.1 Toxic Equivalency Factor of PCDD/Fs 23
2.6.2 Effects of PCDD/Fs on Human Health 25
Chapter3 Experimental Material and Method 26
3.1 Sampling Site 26
3.2 Sampling Method 27
3.2.1 Cloud/Fog Water Sampling 27
3.2.2 Ambient Air Sampling 30
3.2.3 Particulate and Gas Phase Organic Pollution Collection 34
3.3 Pretreatment and Analysis 36
3.3.1 Pretreatment before Sampling 36
3.3.2 Pretreatment before Analysis 36
Chapter 4 Results and Discussion 39
4.1 Meteorological Information 39
4.1.1 Cloud/Fog Water Events 39
4.1.2 Liquid Water Content 42
4.2 PCDD/F Concentration in Cloud/Fog Water 46
4.2.1 Total PCDD/F Concentration in Cloud/Fog Water 46
4.2.2 Phase Distribution of PCDD/Fs 48
4.2.3 Congener Profile of PCDD/Fs 51
4.2.4 Potential sources of PCDD/Fs 54
4.3 PCDD/F Concentration in the Ambient Air 57
4.3.1 Total PCDD/F Concentration in the Ambient Air in 2019 57
4.3.2 Comparison of Estimation and Analysis Data in 2019 58
4.3.3 Estimated atmospheric PCDD/F Concentration in 2018 63
4.4 PCDD/Fs Scavenged by Cloud/Fog Water 66
4.4.1 Scavenging Coefficient 66
4.4.2 Scavenging Ratio 73
Chapter 5 Conclusions and Suggestions 77
5.1 Conclusions 77
5.2 Suggestions 78
Reference 79
參考文獻 Amos, H M et al. 2012. “And Physics Gas-Particle Partitioning of Atmospheric Hg (II) and Its Effect on Global Mercury Deposition.” (Ii): 591–603.
Atkinson, Roger. 1991. “Atmospheric Lifetimes of Dibenzo-p-Dioxins and Dibenzofurans.” Science of the Total Environment, The 104(1–2): 17–33.
Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water, Air, and Soil Pollution, 60(3), 279-300.
Beckett, K. P., P. H.Freer-Smith, and G.Taylor. 1998. “Urban Woodlands: Their Role in Reducing the Effects of Particulate Pollution.” Environmental Pollution 99(3): 347–60.
Berrojalbiz, Naiara, and Esteban Abad. 2015. “Oceanic Sink and Biogeochemical Controls on the Accumulation of Polychlorinated Dibenzo p Dioxins, Dibenzofurans, and Biphenyls in Plankton.”
Bittrich, D R et al. 2011. “Speciation of Mercury ( II ) and Methylmercury in Cloud and Fog Water.” (Ii): 161–69.
Blais, Jules M et al. 1998. “Accumulation of Persistent Organochlorine Compounds in Mountains of Western Canada.” 395(October): 585–88.
Bohren, Craig F.; Albrecht, Bruce A. (1998). Atmospheric Thermodynamics (1st ed.). Oxford University Press.
Chan, Chang-chuan et al. 2016. “Source Apportionment of Mass Concentration and Inhalation Risk with Long- Term Ambient PCDD / Fs Measurements in an Urban Area Source Apportionment of Mass Concentration and Inhalation Risk with Long-Term Ambient PCDD / Fs Measurements in an Urban Area.” Journal of Hazardous Materials 317(May): 180–87.
Chang, Moo Been et al. 2003. “Sampling and Analysis of Ambient Dioxins in Northern Taiwan.” Chemosphere 51(10): 1103–10.
Chang, Shun Shiang et al. 2013. “Influence of the Southeast Asian Biomass Burnings on the Atmospheric Persistent Organic Pollutants Observed at near Sources and Receptor Site.” Atmospheric Environment 78: 184–94.
Chao, Mu Rong et al. 2004. “Approaching Gas-Particle Partitioning Equilibrium of Atmospheric PCDD/Fs with Increasing Distance from an Incinerator: Measurements and Observations on Modeling.” Atmospheric Environment 38(10): 1501–10.
Chen, Wei Sheng et al. 2011. “Fate and Distribution of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in a Woodchip-Fuelled Boiler.” Aerosol and Air Quality Research 11(3): 282–89.
Chi, Kai Hsien et al. 2014. “Increase of Ambient PCDD/F Concentrations in Northern Taiwan during Asian Dust Storm and Winter Monsoon Episodes.” Aerosol and Air Quality Research 14(4): 1279–91.
Chi, Kai Hsien et al. 2010. “PCDD/F Measurement at a High-Altitude Station in Central Taiwan: Evaluation of Long-Range Transport of PCDD/FS during the Southeast Asia Biomass Burning Event.” Environmental Science and Technology 44(8): 2954–60.
diDomenico, Alessandro. 1990. “Guidelines for the Definition of Environmental Action Alert Thresholds for Polychlorodibenzodioxins and Polychlorodibenzofurans.” Regulatory Toxicology and Pharmacology 11(1): 8–23.
Djien Liem, A. K., Peter Furst, and Chris Rappe. 2000. “Exposure of Populations to Dioxins and Related Compounds.” Food Additives and Contaminants 17(4): 241–59.
Eisenreich, S J, and IVives. 2007. “Persistent Organic Pollutants (POPs) in the European Atmosphere: An Updated Overview.”
Eisenreich, Steven J. 1998. “Snow Scavenging of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Minnesota.” 32(12): 1771–78.
Ervens, B. et al. 2013. “Dissolved Organic Carbon (DOC) and Select Aldehydes in Cloud and Fog Water: The Role of the Aqueous Phase in Impacting Trace Gas Budgets.” Atmospheric Chemistry and Physics 13(10): 5117–35.
Ervens, Barbara. 2015. “Modeling the Processing of Aerosol and Trace Gases in Clouds and Fogs.” Chemical Reviews 115(10): 4157–98.
Fernández-González, Ricardo et al. 2014. “Atmospheric Pollutants in Fog and Rain Events at the Northwestern Mountains of the Iberian Peninsula.” Science of the Total Environment 497–498: 188–99.
Gilardoni, S. et al. 2014. “Fog Scavenging of Organic and Inorganic Aerosol in the Po Valley.” Atmospheric Chemistry and Physics 14(13): 6967–81.
Gusev, A, E Mantseva, V Shatalov, and O Travnikov. 2005. “Hemispheric Model (MSCE-Hem ) of Persistent Toxic Substances Dispersion in the Environment.” (May).
Herckes, Pierre, Hui Chang, Taehyoung Lee, and Jeffrey L. Collett. 2007. “Air Pollution Processing by Radiation Fogs.” Water, Air, and Soil Pollution 181(1–4): 65–75.
Hoffman, David J, Barnett A Rattner, and G Allen Burton. Handbook of Ecotoxicology, 2nd Edition.
Holton, J R. 1987. “Dynamic Meteorology.” Eos, Transactions American Geophysical Union 68(46): 1595.
Huang, Chun Jen et al. 2011. “Wet Deposition of Polychlorinated Dibenzo-p-Dioxins/Dibenzofuran in a Rural Area of Taiwan.” Aerosol and Air Quality Research 11(6): 732–48.
Hung, Hayley et al. 2002. “Measurement of Particle-Bound Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) in Arctic Air at Alert, Nunavut, Canada.” Atmospheric Environment 36(6): 1041–50.
Hsu, Shih-chieh et al. 2010. “Sources , Solubility , and Dry Deposition of Aerosol Trace Elements over the East China Sea.” Marine Chemistry 120(1–4): 116–27.
Jiménez, B., M. J.González, and L. M.Hernández. 1991. “Presence of PCDDs and PCDFs in Food for Human Consumption: A Review.” Food Chemistry 39(3): 257–71.
Island, Bear. “A Coupled Fate-Transport and Food Chain Model for PBDES in the High Artic: Application to Lake ELLASJØEN, Bear Island, Norway,.”: 273–76.
Jylh, Rsti. 1991. “Empirical Scavenging Coefficients of Radioactive Substances Released from Chernobyl.” 25(2).
Klemm, Otto, and Neng HueiLin. 2016. “What Causes Observed Fog Trends : Air Quality or Climate Change ?” : 1131–42.
Koester, Carolyn J., and Ronald A.Hites. 1992. “Wet and Dry Deposition of Chlorinated Dioxins and Furans.” Environmental Science and Technology 26(7): 1375–82.
Klemm, Otto et al. 2015. “PH Control in Fog and Rain in East Asia: Temporal Advection of Clean Air Masses to Mt. Bamboo, Taiwan.” Atmosphere 6(11): 1785–1800.
Kogevinas, M. 2001. “Human Health Effects of Dioxins: Cancer, Reproductive and Endocrine System Effects.” Human Reproduction Update 7(3): 331–39.
Lee, A. K Y et al. 2012. “Characterization of Aerosol and Cloud Water at a Mountain Site during WACS 2010: Secondary Organic Aerosol Formation through Oxidative Cloud Processing.” Atmospheric Chemistry and Physics 12(15): 7103–16.
Lee, Kuan-lin et al. 2016. “Atmospheric PM 2.5 and Depositions of Polychlorinated Dibenzo -p- Dioxins and Dibenzofurans in Kaohsiung Area, Southern Taiwan.”: 1775–91.
Levine, S Z, Brook haven National, and Chemistry Division. 1977. “SCAVENGING.”
Li, Peng hui et al. 2016. “Gas-Particle Partitioning and Precipitation Scavenging of Polycyclic Aromatic Hydrocarbons (PAHs) in the Free Troposphere in Southern China.” Atmospheric Environment 128: 165–74. http://dx.doi.org/10.1016/j.atmosenv.2015.12.030.
Li, Peng hui et al. 2010. “Characterization of Polycyclic Aromatic Hydrocarbons Deposition in PM2.5 and Cloud/Fog Water at Mount Taishan (China).” Atmospheric Environment 44(16): 1996–2003.
Li, Peng Hui et al. 2016. “Characterization of Polycyclic Aromatic Hydrocarbons in Cloud Deposition at Mount Heng in Southern China.” Aerosol and Air Quality Research 16(12): 3164–74.
Li, Tao et al. 2017. “Evolution of Trace Elements in the Planetary Boundary Layer in Southern China: Effects of Dust Storms and Aerosol-Cloud Interactions.” Journal of Geophysical Research 122(6): 3492–3506.
Liang, Cikui, James F.Pankow, Jay R.Odum, and John H.Seinfeld. 1998. “Gas/Particle Partitioning of Semivolatile Organic Compounds to Model Inorganic, Organic, and Ambient Smog Aerosols.” Environmental Science and Technology 31(11): 3086–92.
Liang, Yang-ling, and Teng-chiu Lin. 2006. “Fog and Precipitation Chemistry at a Mid-Land Forest in Central Taiwan.” (88): 627–37.
Lin, Long Full et al. 2010. “Dry and Wet Deposition of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans on the Drinking Water Treatment Plant.” Aerosol and Air Quality Research 10(3): 231–34.
Lin, N. H., andV. K.Saxena. 1991. “In-Cloud Scavenging and Deposition of Sulfates and Nitrates: Case Studies and Parameterization.” Atmospheric Environment Part A, General Topics 25(10): 2301–20.
Lin, Neng-huei, andChi-ming Peng. 1999. “Estimates of the Contribution of Below-Cloud Scavenging to the Pollutant Loadings of Rain in Taipei, Taiwan 1 1.” 10(4).
Liu, Xiao Huan et al. 2012. “Evaluation of Trace Elements Contamination in Cloud/Fog Water at an Elevated Mountain Site in Northern China.” Chemosphere 88(5): 531–41.
McKay, Gordon. 2002. “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review.” Chemical Engineering Journal 86(3): 343–68.
Mao, Xiaoxuan et al. 2014. “Modeling Global Persistent Organic Chemicals in Clouds.” Atmospheric Environment 96: 345–52.
Mclachlan, Michael S, and Ulla Sellstro. 2009. “Precipitation Scavenging of Particle-Bound Contaminants – A Case Study of PCDD / Fs ¨ M.” 43: 6084–90.
Montesano, R., and J.Hall. 2002. “Environmental Causes of Human Cancers.” European Journal of Cancer 37: 67–87.
Oka, H et al. 2006. “Atmospheric Deposition of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Kanazawa, Japan.” Journal of Health Science 52(3): 300–307.
Murphy, T J et al. 1994. “Atmospheric Chemistry of PCBs, PCDDs and PCDFs.”
Okita, Toshiichi. 1996. “Measurements of Atmospheric SO2 and SO42−, and Determination of the Wet Scavenging Coefficient of Sulfate Aerosols for the Winter Monsoon Season over the Sea of Japan.” 30(22): 3733–39.
Pankow, James F. 1994. “An Absorption Model of Gas/Particle Partitioning of Organic Compounds in the Atmosphere.” Atmospheric Environment 28(2): 185–88.
Pankow, James F. 1991. “Common Y-Intercept and Single Compound Regressions of Gas-Particle Partitioning Data vs 1/T.” Atmospheric Environment Part A, General Topics 25(10): 2229–39.
Pitea, Demetrio, Marina Lasagni, and Laura Bonati. 1992. “The Toxicity Equivalency Factor Scheme Applied to Municipal Incinerator PCDD/PCDF Emissions When Specific Congener Information Is Lacking.” Waste Management and Research 10(4): 329–43.
R, Chandra Suryani et al. 2015. “Atmospheric Deposition of Polychlorinated Dibenzo -p- Dioxins and Dibenzofurans at Coastal and High Mountain Areas in Taiwan.”: 1390–1411.
Raja, Suresh et al. 2009. “Organic Composition of Fog water in the Texas-Louisiana Gulf Coast Corridor.” Atmospheric Environment 43(27): 4214–22.
Reddy, M Shekar, and Chandra Venkataraman. 2000. “Atmospheric Optical and Radiative Effects of Anthropogenic Aerosol Constituents from India.” 34.
Sakata, Masahiro, and Kazuo Asakura. 2007. “Estimating Contribution of Precipitation Scavenging of Atmospheric Particulate Mercury to Mercury Wet Deposition in Japan.” 41: 1669–80.
Schecter, Arnold et al. 2001. “Intake of Dioxins and Related Compounds from Food in the U.S. Population.” Journal of Toxicology and Environmental Health - Part A 63(1): 1–18.
Schure, Arnout F H, andPerLarsson. 2002. “Polybrominated Diphenyl Ethers in Precipitation in Southern (Ne, Lund) Sweden (Sk A.” 36: 4015–22.
Sciences, Atmospheric. 1990. “C L O U D Chemistry Measurements a N D Estimates of Acidic Deposition on an Above Cloudbase.” 24(2).
Seinfeld, J.H. and Pandis, S.N. (2006). Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Second Edition. John Wiley & Sons, New Jersey.
Sheu, Guey-rong, and Neng-huei Lin. 2011. “Mercury in Cloud Water Collected on Mt . Bamboo in Northern Taiwan during the Northeast Monsoon Season.” Atmospheric Environment 45(26): 4454–62.
Shih, Minliang et al. 2006. “Dry Deposition of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) in Ambient Air.” Chemosphere 62(3): 411–16.
Simon, Stefan et al. 2016. “Chemical Composition of Fog Water at Four Sites in Taiwan.”: 618–31.
Storey, John M.E., and James F.Pankow. 1992. “Gas-Particle Partitioning of Semi-Volatile Organic Compounds to Model Atmospheric Particulate Materials-I. Sorption to Graphite, Sodium Chloride, Alumina, and Silica Particles under Low Humidity Conditions.” Atmospheric Environment Part A, General Topics 26(3): 435–43.
Study, Molecular Dynamics. 2018. “Theoretical Investigations on the Reactivity of Methylidyne Radical Toward.” (3): 1–18.
Tysklind, Mats et al. 1993. “Atmospheric Transport and Transformation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans.” Environmental Science and Technology 27(10): 2190–97.
Wallace, John M.; Hobbs, Peter V. (2006). Atmospheric Science: An Introductory Survey (2nd ed.). U.K. Elsevier Inc.
Wang, Lin Chi et al. 2003. “Effect of Chlorine Content in Feeding Wastes of Incineration on the Emission of Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans.” Science of the Total Environment 302(1–3): 185–98.
Wang, Sheng Hsiang et al. 2010. “Impact of Asian Dust and Continental Pollutants on Cloud Chemistry Observed in Northern Taiwan during the Experimental Period of ABC / EAREX 2005.” 115.
Wang, Ya Fen et al. 2010. “Dry and Wet Depositions of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in the Atmosphere in Taiwan.” Aerosol and Air Quality Research 10(4): 378–90.
Wania, Frank. 2003. “Assessing the Potential of Persistent Organic Chemicals for Long-Range Transport and Accumulation in Polar Regions.” Environmental Science and Technology 37(7): 1344–51.
Witkowska, Agnieszka, and Anita U.Lewandowska. 2016. “Water Soluble Organic Carbon in Aerosols (PM1, PM2.5, PM10) and Various Precipitation Forms (Rain, Snow, Mixed) over the Southern Baltic Sea Station.” Science of the Total Environment 573: 337–46.
Warneck, P. (1999), Chemistry of the Natural Atmosphere, 2nd ed., Academic Press, New York.
Yamasaki, Hlroyasu, Kazuhiro Kuwata, and Hiroko Miyamoto. 1982. “Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons.” Environmental Science and Technology 16(4): 189–94.
“Journal of Geophysical Research : Atmospheres.” 2017. : 3492–3506.
國立中央大學 大氣物理研究所 碩士論文 北台灣冬季層狀雲化學特性分析 研究生: 簡瑋靚(2008), 14-15.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw