進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2406201311455000
論文名稱(中文) 建物能耗之模式與分析
論文名稱(英文) Modelling and Analysis of Building Energy Consumption
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 101
學期 2
出版年 102
研究生(中文) 林寶儀
研究生(英文) Bao-Nghi Lam
學號 R76007017
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-呂執中
口試委員-龍仕璋
口試委員-林耀欽
口試委員-彭泉
中文關鍵字 商辦建築能源管理  K-means分群法  用電準則分析 
英文關鍵字 Building Energy Management  K-means Cluster Method  Energy Consumption Principal 
學科別分類
中文摘要 全球環保意識及能源價格高漲,使能源節約議題受到各國的重視。據國際能源署(IEA)統計,全球建築每年消耗40%的世界能源,建築部門能源使用效率亦被列為主要國家政府能源科技發展政策目標之一。台灣工商業發展快速,商業辦公大樓日增,年用電量也持續上升。以商業性建築物而言,主要耗能部分為空調和照明。其中,空調的用電占比為43.7%、照明的占比為24.8%,可見商辦建築的主要耗電來源為空調的使用。特別是夏季空調的用電量增加幅度高,容易導致尖峰負載。由此可見,瞭解夏季空調用電趨勢是一重要的課題。
本研究利用EnergyPlus建立一商辦建築模型,並模擬該建築物全年之能源消耗情況。透過K-means分群法,分析該建築的空調用電資料,從而找出商辦建築夏季空調的用電模式,並針對不同的用電模式給予適當的能源管理準則,以有效降低能源消耗。本研究將夏季空調用電歸納出三大類型,分別為一般負載、高負載與極高負載三種模式。同時針對各模式提出對應準則,並模擬驗證準則效益,同時結果顯現應用本計畫之準則可減緩11%之能源耗用。
英文摘要 The growing awareness in environmental protection and increasing energy price highlight the related issues of energy management. According to the report of international energy agency (IEA), the global buildings consume almost 40% of the world energy. To increase the building energy utility has become the main policy of many countries. As to the commercial buildings, the two principal energy consumptions are the light (43.7%) and the air-conditioner (24.8%). Furthermore, the increasing energy consumption of the air-conditioner is really considerable in the summer. Therefore, this study establishes a commercial building energy consumption model by EnergyPlus which is a professional energy simulation software developed by the IEA. The model simulates the energy usage in the summer working day, and the result shows that there are three clusters which are Normal-loading, High-loading, and Extremely High-loading separated by the K-means method. The corresponding managerial principle are also given in end of the study and the energy management benefit can reach to 11% of energy saving.
論文目次 口試合格證明 I
摘 要 II
ABSTRACT III
誌 謝 IV
目 錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 4
第四節 研究流程與架構 5
第二章 文獻探討 7
第一節 能源管理議題 7
2.1.1 能源使用概況 7
2.1.2 節能政策 9
第二節 建築物節能 12
第三節 用電管理方法 15
2.3.1 溫度與用電負載 15
2.3.2 用電管理方法 18
第四節 用電行為分群 20
2.4.1 用電模式 20
2.4.2 分群法 22
第三章 研究方法 24
第一節 問題描述 24
第二節 研究架構 25
第三節 建築能耗模擬 26
第四節 K-means分群 30
3.4.1 參數定義 30
3.4.2 K-means分群演算法 32
第五節 能源管理準則 33
第四章 能源資料分析 35
第一節 情境說明 35
第二節 建築物能耗模擬分析 39
第三節 空調用電資料分群 42
第四節 能源管理準則之運用 48
第五節 節能效益之驗證 51
第五章 結論及未來研究方向 53
第一節 結論 53
第二節 未來研究方向 55
參考文獻 56
附錄 60
參考文獻 中文文獻:
台灣綠色生產力基金會. (2011). 2011年非生產性質行業能源查核年報. 台灣綠色生產力基金會-節能服務網.
陳文平. (2000). 台電系統負載特性及溫度敏感度分析. 國立中山大學.
陳麒文. (2003). 溫度對尖峰負載及節約能源的影響. 台灣綠色生產力基金會-節能服務網, 52.
游雅婷. (2006). 公寓大廈公共用電調查研究. 國立成功大學.
楊正光. 電力監控技術. 台灣大電力研究試驗中心.
經濟部能源局. (2009). 辦公大樓節約能源手冊. 財團法人台灣綠色生產力基金會.
經濟部能源局. (2010). 2010年能源產業技術白皮書.
經濟部能源局. (2012). 2012年能源產業技術白皮書.

英文文獻:
Ahmed, A., Korres, N. E., Ploennigs, J., Elhadi, H., & Menzel, K. (2011). Mining building performance data for energy-efficient operation. Advanced Engineering Informatics, 25(2), 341-354.
Ahmed, A., Ploennigs, J., Menzel, K., & Cahill, B. (2010). Multi-dimensional building performance data management for continuous commissioning. Advanced Engineering Informatics, 24(4), 466-475.
Al-Sultan, K. S., & Khan, M. M. (1996). Computational experience on four algorithms for the hard clustering problem. Pattern Recognition Letters, 17(3), 295-308.
Amreshi, S., & Conati, C. (2009). Combining unsupervised and supervised classification to build user models for exploratory learning environments. Journal of Educational Data Mining, 1(1), 1–54.
ASHRAE. (1995). Addendum to thermal environmental conditions for human occupancy ANSI/ASHRAE Standard 55a-1995.
Balta, M. T., Dincer, I., & Hepbasli, A. (2011). Development of sustainable energy options for buildings in a sustainable society. Sustainable Cities and Society, 1(2), 72-80.
Beeck, N. V., Doukas, H., Gioria, M., Karakosta, C., & Psarras, J. (2009). Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system. Applied Energy, 86(4), 452-459.

Berry, M. J., & Linoff, G. S. (2004). Data mining techniques for marketing, sales, and customer support. Wiley, New York, USA.
Chen, C. S., Hwang, J. C., & Huang, C. W. (1997). Application of load survey systems to proper tariff design. IEEE Transactions on Power Systems, 12(4), 1746-1751.
Chen, C. S., Hwang, J. C., Tzeng, Y. M., Huang, C. W., & Cho, M. Y. (1996). Determination of customer load characteristics by load survey system at taipower. IEEE Transactions on Power Delivery, 11(3), 1430-1436.
Duarte, F.J., Rodrigues, F., Figueiredo, V., Vale, Z., & Cordeiro, M. (2003). Data mining techniques applied to electric energy consumers characterization. Artificial Intelligence and Soft Computing, 14-16.
Dudek, G.. (2011). Next Day Electric Load Curve Forecasting Using K-Means Clustering. Rynek Energii(1), 143-149.
EC. (2010). Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings. Brussels, Belgium.
Elkarmi, F. (2008). Load research as a tool in electric power system planning, operation, and control - The case of Jordan. Energy Policy, 36(5), 1757-1763.
Fidalgo, J. N., Matos, M. A., & Ribeiro, L. (2012). A new clustering algorithm for load profiling based on billing data. Electric Power Systems Research, 82(1), 27-33.
Filho, J. R., Gontijo, E. M., Delaiba, A. C., Mazina, E., Cabral, J. E., & Pinto, J. O. P. (2004). Fraud identification in electricity company customers using decision tree. Paper presented at the Systems, Man and Cybernetics, 2004 IEEE International Conference on.
Fumo, N., Mago, P., & Luck, R. (2010). Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy and Buildings, 42(12), 2331-2337.
Fumo, N., Mago, P. J., & Chamra, L. M. (2009). Energy and economic evaluation of cooling, heating, and power systems based on primary energy. Applied Thermal Engineering, 29(13), 2665-2671.
Fung, W. Y., Lam, K. S., Hung, W. T., Pang, S. W., & Lee, Y. L. (2006). Impact of urban temperature on energy consumption of Hong Kong. Energy, 31(14), 2623-2637.
Gerbec, D., Gasperic, S., Smon, I., & Gubina, F. (2002). An approach to customers daily load profile determination. Paper presented at the Power Engineering Society Summer Meeting, 2002 IEEE.
Goia, A., May, C., & Fusai, G. (2010). Functional clustering and linear regression for peak load forecasting. International Journal of Forecasting, 26(4), 700-711.
Hilas, C. S., & Mastorocostas, P. A. (2008). An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowledge-Based Systems, 21(7), 721-726.
IEA. (2008). World Energy Outlook 2008.
IEA. (2010a). Energy Technology Perspective 2010 - Key graphs.
IEA. (2010b). Policy pathways: Energy performance certification of buildings –A policy tool to improve energy efficienc.
IEA. (2010c). World Energy Outlook 2010.
IPCC. (2007). Climate Change 2007: Mitigation of Climate Change. WGIII contribution to the IPCC Fourth Assessment Report.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881-892.
Lakervi, E., & Holmes, E.J. (1995). Electricity distribution network design. Springer: Berlin.
Larsen, S. F., Filippin, C., & Gonzalez, S. (2012). Study of the energy consumption of a massive free-running building in the Argentinean northwest through monitoring and thermal simulation. Energy and Buildings, 47, 341-352.
Long, N., Bonnema, E., Field, K., & Torcellini, P. (2010). Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297. Berkeley, University of California Press.
Marinakis, V., Karakosta, C., Doukas, H., Androulaki, S., & Psarras, J. (2012). A building automation and control tool for remote and real time monitoring of energy consumption. Sustainable Cities and Society.
Mechri, H. E., Capozzoli, A., & Corrado, V. (2010). Use of the ANOVA approach for sensitive building energy design. Applied Energy, 87(10), 3073-3083.
Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses. Applied Energy, 87(7), 2411-2419.
Nikolopoulos, V., Mpardis, G., Giannoukos, I., Lykourentzou, I., & Loumos, V. (2011). Web-based decision-support system methodology for smart provision of adaptive digital energy services over cloud technologies. IET Software, 5(5), 454.
Omer, A. M. (2008). Renewable building energy systems and passive human comfort solutions. Renewable & Sustainable Energy Reviews, 12(6), 1562-1587.
Popescu, D., Bienert, S., Schutzenhofer, C., & Boazu, R. (2012). Impact of energy efficiency measures on the economic value of buildings. Applied Energy, 89(1), 454-463.
Rasanen, T., Voukantsis, D., Niska, H., Karatzas, K., & Kolehmainen, M. (2010). Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Applied Energy, 87(11), 3538-3545.
Selim, S. Z., & Ismail, M. A. (1984). K-means-Type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1), 81-87.
Shahbaz, M., & Rahman, N. (2008). Data Mining for Engineering Sector in Pakistan: Issues and Implications. Proceedings of the World Congress on Engineering and Computer Science, 787–792.
Shaheen, M., Shahbaz, M., Guergachi, A., & Rehman, Z. (2011). Mining sustainability indicators to classify hydrocarbon development. Knowledge-Based Systems, 24(8), 1159-1168.
Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Boston : Pearson Addison Wesley.
Urge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world's buildings. Energy Policy, 36(2), 642-661.
Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586-600.
Wan, K. K. W., Li, D. H. W., Pan, W. Y., & Lam, J. C. (2012). Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications. Applied Energy, 97, 274-282.
Zalik, K. R. (2008). An efficient k-means clustering algorithm. Pattern Recognition Letters, 29(9), 1385-1391.

網站資料:
交通部中央氣象局. 月平均氣溫資料統計. http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm
U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technology Program, Building energy software tools directory.
http://www1.eere.energy.gov/buildings/commercial/commercial_bookmark.html
B. Griffith, D. Crawley, Methodology for analyzing the technical potential for energy performance in the U.S. commercial buildings sector with detailed energy modeling.
http://simulationresearch.lbl.gov/EP/ep_main.html
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw