進階搜尋


下載電子全文  
系統識別號 U0026-2401201915193000
論文名稱(中文) 嗜熱聚球藻以薄板反應器探討不同光與營養鹽優化之生質體及醣類產率暨二氧化碳固定速率
論文名稱(英文) Effects of light and nutrient availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus sp. in flat plate photo−bioreactors
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 蘇峙銘
研究生(英文) Chih-Ming Su
學號 P58981114
學位類別 博士
語文別 英文
論文頁數 120頁
口試委員 指導教授-朱信
口試委員-黃良銘
口試委員-黃浩仁
口試委員-高思懷
口試委員-盧重興
口試委員-周明顯
中文關鍵字 二氧化碳固定  薄板反應器  嗜熱聚球藻  高密度培養  生質體  生質酒精 
英文關鍵字 CO2 fixation  flat plate bioreactor  Thermosynechococcus  dense culture  biomass  bioethanol 
學科別分類
中文摘要 以鹼液吸收二氧化碳後,可將二氧化碳從氣態轉變為溶解性無機碳的形式存在於液態內,輔以可行光合作用之微藻,對於溶解性無機碳加以利用並作為其生長所需碳源,而達二氧化碳減量目的。本研究承襲此二氧化碳減量概念,將溶解性無機碳用於培養嗜熱性聚球藻,並設計嗜熱性聚球藻專用之薄板光反應器,以降低多數研究中在戶外面臨到必須以額外耗能之方式對薄板反應器進行降溫的耗能模式。
為了將嗜熱性聚球藻應用於戶外培養,進行生質體之產出、二氧化碳的減量及作為生質酒精生產之料源等應用,本研究以發光二極體列陣作為嗜熱性聚球藻培養用之光源,模擬戶外培養時易遭遇之強光環境,首先針對曝氣量、光照強度、生質體密度及設計之光徑,探討光線的可利用性如何影響相關產出。經研究後發現,上述之變數對於生質體產出、二氧化碳固定速率及生質酒精生產潛力均佔有主要影響力,但對於曝氣量而言,設定0.5 vvm的曝氣量可提供足夠的混合生產生質體,並無法藉由提高曝氣量提升生質體產率。此外,以1.5公分光徑之光反應器培養嗜熱性聚球藻並使生質體密度在每升3公克條件下,使生質體產率為每升每小時116毫克、二氧化碳固定速率為每升每小時170毫克、及總醣產率為每升每小時67毫克。若使所培養的嗜熱性聚球藻生質體密度設定在最佳生質體密度,在兩種強光照(1,000及2,000 μE m−2 s−1)照射下對於產出有較小的影響性。生質體產出亦無法在更高生質體密度下(大於每升3公克)有更佳表現。
在檢視完光的可利用性影響後,續針對培養基中的營養鹽影響性進行研究,探討是否可藉由營養鹽濃度的改善輔以高密度培養,進一步提升生質體產率、二氧化碳固定速率及生質酒精生產潛力。此外,為更有效確認生質酒精生產潛力,本研究續以測定糖原取代原本測定總醣的評估方式,避免其他難被發酵之五碳或六碳糖影響生質酒精產出之評估。結果顯示,在研究的營養鹽濃度範圍內,不論欲提高生質體產率或培養的持久性,培養基中的鈉鹽、硝酸鈉及氯化鈣濃度需被降低,但硫酸鎂濃度反而需被提升。大部份在生質體內的碳含量約可維持於40%。此外,重新組織與選擇可使生質體有較佳產出的營養鹽濃度範圍後,本研究開發出嗜熱性聚球藻專用之培養基(Su and Chu’s 培養基)。在後,以1.5公分光徑薄板反應器在2,000 μE m−2 s−1強光照射下使用上述培養基培養嗜熱聚球藻後發現,生質體產率為每升每小時138.7毫克、二氧化碳固定速率為每升每小時221.5毫克、及總醣產率為每升每小時75.9毫克。因此以高密度培養嗜熱聚球藻於薄板光反應器,輔以開發出之Su and Chu’s 培養基,在強光照射下不論是在生質體產出、二氧化碳固定速率及生質酒精產出潛力極大。
英文摘要 The concept of CO2 chemo−absorption by sodium hydroxide in a wet scrubber followed by microalgae cultivation was used potentially as a means to reduce the major greenhouse gas, CO2. This study accepted the idea by utilized dissolved inorganic carbon as carbon source to cultivate thermophilic cyanobacteria strain, Thermosynechococucs CL−1 (TCL−1), and designed flat plate photobioreactors for cultivating this strain without excess energy input for cooling the flat plate photobioreactor as other researchers did.
In order to apply TCL−1 in biomass production, CO2 fixation, and bioenergy production, and more close to reality of cultivation the strain outdoors, light emitting diodes array were used as the light source with strong illumination. Effects of aeration rates, illumination intensities, and biomass concentrations were examined in advance under designed light path to evaluate how light availability affects TCL−1. Results suggest that most of these parameters play major roles in biomass production, CO2 fixation, and carbohydrate production. However, aeration rate of 0.5 vvm is adequate because no significant improvement of biomass production can be observed under greater aeration rates. In addition, the biomass productivity, CO2 fixation rate, and carbohydrate productivity reached 116, 170, and 67 mg L−1 h−1, respectively, in 1.5 cm light path photobioreactor and under optimal biomass concentration of about 3 g biomass L−1. Illumination intensity of 1,000 or 2,000 μE m−2 s−1 had minor effects when under optimal biomass concentration. Moreover, the biomass productivity can’t be increased furthermore when biomass concentration was greater than 3 g L−1.
After the investigation of the light availability effects, effects of nutrient availability were also examined under dense culture to test whether the biomass production, CO2 fixation, and bioenergy production potential could be further increased. In addition, glycogen instead of carbohydrate, which may involve other hard fermentable pentose or hexose sugars, were analyzed to have more accurate evaluation of bioethanol production potential. Results show that among all the examined nutrients, concentrations of sodium ion, NaNO3, and CaCl2•2H2O, should be decreased, as the MgSO4•7H2O concentrations should be enhanced to obtain higher biomass productivity or persistence of the growth. Most of the carbon contents in TCL−1 remain stable, about 40% (w/w), under various nutrient levels. In addition, Su and Chu’s medium was reorganized by picking up the nutrient concentrations resulting from the biomass production. The adoption of the new medium for cultivating TCL−1 exhibits the superior biomass productivity, CO2 fixation rate, and glycogen productivity of 138.7, 221.5, and 75.9 mg L−1 h−1, respectively, under 2,000 μE m−2 s−1 illumination in the 1.5 cm light path flat plate photobioreactors. The high biomass productivity, CO2 fixation rate, and glycogen productivity indicate that the use of Su and Chu’s medium exhibits high potential for applying TCL−1 in CO2 fixation and bioethanol production potential in the flat plate photobioreactors.
論文目次 摘要 IV
Abstract VI
誌 謝 VIII
CONTENT A
Pages A
LIST OF TABLES C
LIST OF FIGURES D
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURES SURVEY 6
2.1 CO2 emission source, energy consumption nowadays, and CO2 mitigation technology 6
2.2 CO2 mitigation by cyanobacteria: mechanism 9
2.3 CO2 mitigation by cyanobacteria: engineering 16
2.4 Bioethanol production feedstocks from cyanobacteria 23
2.5 Biomass production is the keystone 33
CHAPTER 3 EXPERIMENTAL EQUIPMENTS AND PROCEDURES 36
3.1 Strain and inoculation system 36
3.2 Materials 37
3.2.1 Medium 37
3.2.2 Experimental equipments 39
3.3 Culture system 42
3.4 Analytical procedures 45
CHAPTER 4 RESULTS AND DISCUSSION 47
4.1 Effects of light availability on biomass production 47
4.2 Effects of light availability on CO2 fixation rate 55
4.3 Effects of light availability on bioethanol production potential 59
4.4 Effects of nutrient availability on biomass production 61
4.5 Effects of nutrient availability on CO2 fixation rate 83
4.6 Effects of nutrient availability on bioethanol production potential 91
CHAPTER 5 CONCLUSTIONS 95
CHAPTER 6 RECOMMENDATIONS 97
REFERENCES 98
APPENDIX 117
APPENDIX 1. The feeding medium compositions of the inoculation pools under continuous operation. 117
APPENDIX 2. Parameters and systems used for investigating the light and nutrient effects on TCL−1. 118
APPENDIX 3. Examined nutrients concentrations in the flat plate photobioreactors. 119
APPENDIX 4.Effect of nutrients concentrations on the glycogen content folds as compared to the controlled group 120
參考文獻 Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J. S., Kondo, A., Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technol., 108, (0), 211−215, 2012.
Aikawa, S., Joseph, A., Yamada, R., Izumi, Y., Yamagishi, T., Matsuda, F., Kawai, H., Chang, J. S., Hasunuma, T., Kondo, A., Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energ. Environ. Sci., 6, (6), 1844−1849, 2013.
Allard, B., Templier, J., High molecular weight lipids from the trilaminar outer wall (TLS)−containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum. Phytochemistry, 57, (3), 459−467, 2001.
Aoyama, K., Uemura, I., Miyake, J., Asada, Y., Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J. Ferment. Bioeng., 83, (1), 17−20, 1997.
Arata, S., Strazza, C., Lodi, A., Del Borghi, A., Spirulina platensis culture with flue gas feeding as a cyanobacteria−based carbon sequestration option. Chem. Eng. Technol., 36, (1), 91−97, 2013.
Ariño, X., Ortega−Calvo, J.−J., Hernandez−Marine, M., Saiz−Jimenez, C., Effect of sulfur starvation on the morphology and ultrastructure of the cyanobacterium Gloeothece sp. PCC 6909. Arch. Microbiol., 163, (6), 447−453, 1995.
Armaroli, N., Balzani, V., The future of energy supply: challenges and opportunities. Angew. Chem. Int. Edit., 46, (1−2), 52−66, 2007.
Badger, M. R., Price, G. D., CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot., 54, (383), 609−622, 2003.
Bartlett, S., Mitra, M., Moroney, J., CO2 concentrating mechanisms. in: The structure and function of plastids (Vol. 23). Springer, Netherlands, 253−271, 2006.
Batterton, J., Jr., Baalen, C., Growth responses of blue−green algae to sodium chloride concentration. Arch. Mikrobiol., 76, (2), 151−165, 1971.
Baulina, O. I., Chivkunova, O. B., Merzlyak, M. N., Destruction of pigments and ultrastructural changes in cyanobacteria during photodamage. Russ. J. Plant Physl. +, 51, (6), 761−769, 2004.
Baulina, O. I., Samylina, O. S., Gerasimenko, L. M., Changes in the cell ultrastructure of the haloalkaliphilic endoevaporite cyanobacterium ‘Euhalothece natronophila’ during fossilization. Microbiology+, 80, (6), 797−804, 2011.
Bilanovic, D., Andargatchew, A., Kroeger, T., Shelef, G., Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energ. Convers. Manage. 50, (2), 262−267, 2009.
Blokker, P., Schouten, S., Van den Ende, H., De Leeuw, J. W., Damste, J. S. S., Cell wall−specific omega−hydroxy fatty acids in some freshwater green microalgae. Phytochemistry, 49, (3), 691−695, 1998.
Bondioli, P., Della Bella, L., Rivolta, G., Chini Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., Tredici, M. R., Oil production by the marine microalgae Nannochloropsis sp. F&M−M24 and Tetraselmis suecica F&M−M33. Bioresource Technol., 114, (0), 567−572, 2012.
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., Vítová, M., Microalgae—novel highly efficient starch producers. Biotechnol. Bioeng., 108, (4), 766−776, 2011.
Chen, C. Y., Kao, P. C., Tsai, C. J., Lee, D. J., Chang, J. S., Engineering strategies for simultaneous enhancement of C−phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technol., 145, (0), 307−312, 2013a.
Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W., Chang, J. S., Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal. 78, (0), 1−10, 2013b.
Chiang, C.−L., Lee, C.−M., Chen, P.−C., Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresource Technol., 102, (9), 5400−5405, 2011.
Cox, N., Pantazis, D. A., Neese, F., Lubitz, W., Biological water oxidation. Accounts Chem. Res., 46, (7), 1588−1596, 2013.
de Morais, M. G., Costa, J. A. V., Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three−stage serial tubular photobioreactor. J. Biotechnol., 129, (3), 439−445, 2007.
Dephilippis, R., Sili, C., Vincenzini, M., Glycogen and poly−β−hydroxybutyrate synthesis in Spirulina−maxima. J. Gen. Microbiol., 138, (8), 1623−1628, 1992.
Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., Teixeira, J. A., Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energ., 88, (10), 3331−3335, 2011.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., Colorimetric Method for determination of sugars and related substances. Anal. Chem., 28, (3), 350−356, 1956.
Eberly, J., Ely, R., Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. J. Ind. Microbiol. Biot., 39, (6), 843−850, 2012.
Edwards, M. R., Berns, D. S., Ghiorse, W. C., Holt, S. C., Ultrastructure of the thermophilic blue−green alga, Synechococcus lividus copeland. J. Phycol., 4, (4), 283−298, 1968.
Efremenko, E. N., Nikolskaya, A. B., Lyagin, I. V., Senko, O. V., Makhlis, T. A., Stepanov, N. A., Maslova, O. V., Mamedova, F., Varfolomeev, S. D., Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource Technol., 114, (0), 342−348, 2012.
Ernst, A., Böger, P., Glycogen Accumulation and the induction of nitrogenase activity in the heterocyst−forming cyanobacterium Anabaena variabilis. J. Gen. Microbiol., 131, (12), 3147−3153, 1985.
Ernst, A., Kirschenlohr, H., Diez, J., Böger, P., Glycogen content and nitrogenase activity in Anabaena variabilis. Arch. Microbiol., 140, (2−3), 120−125, 1984.
Eykelenburg, C., On the morphology and ultrastructure of the cell wall of Spirulina platensis. A. Van. Leeuw. J. Microb., 43, (2), 89−99, 1977.
Fernández, J. F. S., González−López, C. V., Fernández, F. G. A., Sevilla, J. M. F., Grima, E. M., Utilization of Anabaena sp. in CO2 removal processes. Appl. Microbiol. Biot., 94, (3), 613−624, 2012.
Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R. D., Advances in CO2 capture technology—the U.S. department of energy's carbon sequestration program. Int. J. Greenh. Gas Con., 2, (1), 9−20, 2008.
Fisher, T., Berner, T., Iluz, D., Dubinsky, Z., The kinetics of the photoacclimation response of Nannochloropsis sp. (Eustigmatophyceae): A study of changes in ultrastructure and PSU density. J. Phycol., 34, (5), 818−824, 1998.
Fujii, M., Sato, Y., Ito, H., Masago, Y., Omura, T., Monosaccharide composition of the outer membrane lipopolysaccharide and O−chain from the freshwater cyanobacterium Microcystis aeruginosa NIES−87. J. Appl. Microbiol. 113, (4), 896−903, 2012.
Garcia−Pichel, F., Belnap, J., Neuer, S., Schanz, F., Estimates of global cyanobacterial biomass and its distribution. Algol. Stud., 109, (1), 213−227, 2003.
Gelin, F., Boogers, I., Noordeloos, A. A. M., Damste, J. S. S., Riegman, R., De Leeuw, J. W., Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: geochemical implications. Org. Geochem., 26, (11−12), 659−675, 1997.
Gerken, H. G., Donohoe, B., Knoshaug, E. P., Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, 237, (1), 239−253, 2013.
Giordano, M., Beardall, J., Raven, J. A., CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. in: Annual review of plant biology (Vol. 56). Annual Reviews, Palo Alto, 99−131, 2005.
Gitelson, A., Qiuang, H., Richmond, A., Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Appl. Environ. Microb., 62, (5), 1570−3, 1996.
Golecki, J., Ultrastructure of cell wall and thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus under the influence of temperature shifts. Arch. Microbiol., 120, (2), 125−133, 1979.
González López, C. V., Acién Fernández, F. G., Fernández Sevilla, J. M., Sánchez Fernández, J. F., Cerón García, M. C., Molina Grima, E., Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresource Technol., 100, (23), 5904−5910, 2009.
González−Fernández, C., Ballesteros, M., Linking microalgae and cyanobacteria culture conditions and key−enzymes for carbohydrate accumulation. Biotechnol. Adv., 30, (6), 1655−1661, 2012.
Gorelova, O. A., Baulina, O. I., Ultrastructure of cyanobacterium Nostoc sp. f. Blasia cell forms in persisting populations. Microbiology+, 78, (5), 609−617, 2009.
Guerra, L. T., Xu, Y., Bennette, N., McNeely, K., Bryant, D. A., Dismukes, G. C., Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Biotechnol. 166, (3), 65−75, 2013.
Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., Wang, G., Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresource Technol., 127, (0), 422−428, 2013.
Hanagata, N., Dubinsky, Z., Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J. Phycol., 35, (5), 960−966, 1999.
Hartman, F. C., Harpel, M. R., Structure, Function, regulation, and assembly of D−ribulose−1,5−bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem., 63, (1), 197−232, 1994.
Harun, R., Danquah, M. K., Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J., 168, (3), 1079−1084, 2011.
Hasunuma, T., Kikuyama, F., Matsuda, M., Aikawa, S., Izumi, Y., Kondo, A., Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J. Exp. Bot., 64, (10), 2943−2954, 2013.
Ho, S.−H., Chen, C.−Y., Chang, J.−S., Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW−N. Bioresource Technol., 113, (0), 244−252, 2012.
Hoiczyk, E., Hansel, A., Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol., 182, (5), 1191−1199, 2000.
Howarth, K. R., Phillips, S. M., MacDonald, M. J., Richards, D., Moreau, N. A., Gibala, M. J., Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. J. Appl. Physiol., 109, (2), 431−438, 2010.
Hsueh, H. T., Chu, H., Chang, C. C., Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ. Sci. Technol., 41, (6), 1909−1914, 2007a.
Hsueh, H. T., Chu, H., Yu, S. T., A batch study on the bio−fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66, (5), 878−886, 2007b.
Hsueh, H. T., Li, W. J., Chen, H. H., Chu, H., Carbon bio−fixation by photosynthesis of Thermosynechococcus sp. CL−1 and Nannochloropsis oculta. J. Photoch. Photobio. B, 95, (1), 33−39, 2009.
Hu, Q., Guterman, H., Richmond, A., A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng., 51, (1), 51−60, 1996.
Hu, Q., Kurano, N., Kawachi, M., Iwasaki, I., Miyachi, S., Ultrahigh−cell−density culture of a marine green alga Chlorococcum littorale in a flat−plate photobioreactor. Appl. Microbiol. Biot., 49, (6), 655−662, 1998.
Illman, A. M., Scragg, A. H., Shales, S. W., Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech., 27, (8), 631−635, 2000.
Ishida, T., Hasegawa, N., Hayashi, N. R., Peerapornpisal, Y., Ishii, M., Igarashi, Y., Kodama, T., Growth characteristics and dense culture of a thermophilic cyanobacterium, Chroococcidiopsis sp. strain TS−821. J. Ferment. Bioeng., 83, (6), 571−576, 1997.
Jacob−Lopes, E., Scoparo, C. H. G., Franco, T. T., Rates of CO2 removal by Aphanothece microscopica Nägeli in tubular photobioreactors. Chem. Eng. Process.: Process Intensification, 47, (8), 1365−1373, 2008.
Jacob−Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., Franco, T. T., Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem. Eng. Process.: Process Intensification, 48, (1), 306−310, 2009.
Ji, Y. C., Sherrell, R. M., Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol. Oceanogr., 53, (5), 1790−1804, 2008.
Jin, H.−F., Lim, B.−R., Lee, K., Influence of nitrate feeding on carbon dioxide fixation by microalgae. J. Environ. Sci. Heal. A, 41, (12), 2813−2824, 2006.
John, R. P., Anisha, G. S., Nampoothiri, K. M., Pandey, A., Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technol., 102, (1), 186−193, 2011.
Jones, C. S., Mayfieldt, S. P., Algae biofuels: versatility for the future of bioenergy. Curr. Opin. Biotech.. 23, (3), 346−351, 2012.
Kajiwara, S., Yamada, H., Ohkuni, N., Ohtaguchi, K., Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energ. Convers. Manage., 38, (0), S529−S532, 1997.
Kaplan, A., Reinhold, L., CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Phys., 50, (1), 539−570, 1999.
Kepekçi, R., Saygideger, S., Enhancement of phenolic compound production in Spirulina platensis by two−step batch mode cultivation. J. Appl. Phycol., 24, (4), 897−905, 2012.
Keresztes, Z. G., Felfoldi, T., Somogyi, B., Szekely, G., Dragos, N., Marialigeti, K., Bartha, C., Voros, L., First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles, 16, (5), 759−769, 2012.
Ketseoglou, I., Bouwer, G., Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins. J. Biotechnol., 167, (1), 64−71, 2013.
Kompantseva, E. I., Komova, A. V., Rusanov, I. I., Pimenov, N. V., Sorokin, D. Y., Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai krai). Microbiology+, 78, (5), 643−649, 2009.
Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C., Hankamer, B., Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photoch. Photobio. Sci., 4, (12), 957−970, 2005.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol., 28, (7), 371−380, 2010.
Kumar, A., Yuan, X., Sahu, A. K., Dewulf, J., Ergas, S. J., Van Langenhove, H., A hollow fiber membrane photo−bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J. Chem. Technol. Biot., 85, (3), 387−394, 2010.
Kunjapur, A. M., Eldridge, R. B., Photobioreactor design for commercial biofuel production from microalgae. Ind. Eng. Chem. Res., 49, (8), 3516−3526, 2010.
Laloknam, S., Tanaka, K., Buaboocha, T., Waditee, R., Incharoensakdi, A., Hibino, T., Tanaka, Y., Takabe, T., Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl. Environ. Microb., 72, (9), 6018−6026, 2006.
Leu, J. Y., Lin, T. H., Selvamani, M. J. P., Chen, H. C., Liang, J. Z., Pan, K. M., Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C−phycocyanin extraction. Process Biochem., 48, (1), 41−48, 2013.
Lewis, N. S., Toward cost−effective solar energy use. Science, 315, (5813), 798−801, 2007.
Liberton, M., Howard Berg, R., Heuser, J., Roth, R., Pakrasi, H. B., Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma, 227, (2−4), 129−138, 2006.
Luo, Y.−H., Mitsui, A., Hydrogen production from organic substrates in an aerobic nitrogen−fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511. Biotechnol. Bioeng., 44, (10), 1255−1260, 1994.
Marin, K., Suzuki, I., Yamaguchi, K., Ribbeck, K., Yamamoto, H., Kanesaki, Y., Hagemann, M., Murata, N., Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. P. Natl. Acad. Sci. USA, 100, (15), 9061−9066, 2003.
Markou, G., Chatzipavlidis, I., Georgakakis, D., Carbohydrates production and bio−flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenerg. Res., 5, (4), 915−925, 2012.
Marquardt, J., Mörschel, E., Rhiel, E., Westermann, M., Ultrastructure of Acaryochloris marina, an oxyphotobacterium containing mainly chlorophyll d. Arch. Microbiol., 174, (3), 181−188, 2000.
Mary Leema, J. T., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., Karthikayulu, S., High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technol., 101, (23), 9221−9227, 2010.
McCarren, J., Heuser, J., Roth, R., Yamada, N., Martone, M., Brahamsha, B., Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J. Bacteriol., 187, (1), 224−230, 2005.
McGinn, P. J., Price, G. D., Badger, M. R., High light enhances the expression of low−CO2−inducible transcripts involved in the CO2−concentrating mechanism in Synechocystis sp. PCC6803. Plant Cell Environ., 27, (5), 615−626, 2004.
McGinn, P. J., Price, G. D., Maleszka, R., Badger, M. R., Inorganic carbon limitation and light control the expression of transcripts related to the CO2−concentrating mechanism in the cyanobacterium Synechocystis sp strain PCC6803. Plant Physiol., 132, (1), 218−229, 2003.
Merzlyak, M. N., Chivkunova, O. B., Maslova, I. P., Naqvi, K. R., Solovchenko, A. E., Klyachko−Gurvich, G. L., Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russ. J. Plant Physl. +, 55, (3), 420−425, 2008.
Miao, X., Wu, Q., Wu, G., Zhao, N., Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp. Biotechnol. Lett., 25, (5), 391−396, 2003.
Miyairi, S., CO2 assimilation in a thermophilic cyanobacterium. Energ. Convers. Manage., 36, (6–9), 763−766, 1995.
Moreno, J., Vargas, M. A., Olivares, H., Rivas, J. n., Guerrero, M. G., Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J. Biotechnol., 60, (3), 175−182, 1998.
Morita, M., Watanabe, Y., Saiki, H., Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol. Bioeng., 69, (6), 693−698, 2000.
Morsy, F. M., Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms. Photochem. Photobiol., 87, (1), 137−142, 2011.
Mussatto, S. I., Dragone, G., Guimaraes, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., Teixeira, J. A., Technological trends, global market, and challenges of bio−ethanol production. Biotechnol. Adv., 28, (6), 817−830, 2010.
Nagarkar, S., Williams, G., Subramanian, G., Saha, S. K., Cyanobacteria−dominated biofilms: a high quality food resource for intertidal grazers. Hydrobiologia, 512, (1−3), 89−95, 2004.
Noel, J. D., Koros, W. J., McCool, B. A., Chance, R. R., Membrane−mediated delivery of carbon dioxide for consumption by photoautotrophs: eliminating thermal regeneration in carbon capture. Ind. Eng. Chem. Res., 51, (12), 4673−4681, 2012.
Nomsawai, P., de Marsac, N. T., Thomas, J. C., Tanticharoen, M., Cheevadhanarak, S., Light regulation of phycobilisome structure and gene expression in Spirulina platensis C1 (Arthrospira sp. PCC 9438). Plant Cell Physiol., 40, (12), 1194−1202, 1999.
Ohtaguchi, K., Kajiwara, S., Mustaqim, D., Takahashi, N., Cyanobacterial bioconversion of carbon dioxide for fuel productions. Energ. Convers. Manage., 38, (0), S523−S528, 1997.
Oliveira, M. A. C. L. d., Monteiro, M. P. C., Robbs, P. G., Leite, S. G. F., Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult. Int., 7, (4), 261−275, 1999.
Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., Madamwar, D., Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technol., 102, (22), 10163−10172, 2011.
Post, A. F., Transient state characteristics of changes in light conditions for the cyanobacterium Oscillatoria agardhii. Arch. Microbiol., 149, (1), 19−23, 1987.
Pribyl, P., Cepak, V., Zachleder, V., Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J. Appl. Phycol., 25, (2), 545−553, 2013.
Price, G. D., Badger, M. R., Woodger, F. J., Long, B. M., Advances in understanding the cyanobacterial CO2−concentrating−mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot., 59, (7), 1441−1461, 2008.
Qiang, H., Guterman, H., Richmond, A., Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. J. Phycol., 32, (6), 1066−1073, 1996.
Qiang, H., Richmond, A., Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. Appl. Phycol., 6, (4), 391−396, 1994.
Qiang, H., Richmond, A., Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Phycol., 8, (2), 139−145, 1996.
Qiang, H., Zarmi, Y., Richmond, A., Combined effects of light intensity, light−path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol., 33, (2), 165−171, 1998.
Qiang, H., Zheungu, H., Cohen, Z., Richond, A., Enhancement of eicosapentaenoic acid (EPA) and γ−linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur. J. Phycol., 32, (1), 81−86, 1997.
Radmann, E. M., Camerini, F. V., Santos, T. D., Costa, J. A. V., Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energ. Convers. Manage., 52, (10), 3132−3136, 2011.
Rae, B. D., Long, B. M., Badger, M. R., Price, G. D., Structural determinants of the outer shell of β−carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3−K4, CcmO, and CcmL. Plos One, 7, (8), e43871, 2012.
Rajeshwari, K. R., Rajashekhar, M., Biochemical composition of seven species of cyanobacteria isolated from different aquatic habitats of Western Ghats, Southern India. Braz. Arch. Biol. Techn., 54, 849−857, 2011.
Rangsayatorn, N., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., Lanza, G. R., Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ. Pollut., 119, (1), 45−53, 2002.
Rao, A. B., Rubin, E. S., A technical, economic, and environmental assessment of amine−based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol., 36, (20), 4467−4475, 2002.
Raven, J., Carbon. in: Ecology of cyanobacteria II, Springer, Netherlands, 443−460, 2012.
Richmond, A., Efficient utilization of high irradiance for production of photoautotropic cell mass: a survey. J. Appl. Phycol., 8, (4−5), 381−387, 1996.
Richmond, A., Growth characteristics of ultrahigh−density microalgal cultures. Biotechnol. Biopro. E., 8, (6), 349−353, 2003.
Richmond, A., Principles for attaining maximal microalgal productivity in photobioreactors: an overview. in: Asian pacific phycology in the 21st century: prospects and challenges (Vol. 173), Springer, Netherlands, 33−37, 2004.
Richmond, A., Cheng−Wu, Z., Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J. Biotechnol., 85, (3), 259−269, 2001.
Richmond, A., Cheng−Wu, Z., Zarmi, Y., Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell−growth inhibition. Biomol. Eng., 20, (4–6), 229−236, 2003.
Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M. R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low−cost photobioreactor. Biotechnol. Bioeng., 102, (1), 100−112, 2009.
Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L., Munoz, J. A., Biosorption with algae: a statistical review. Crit. Rev. Biotechnol., 26, (4), 223−235, 2006.
Rosales, N., Loreto, C., Bermudez, J., Morales, E., Intermediate renewal rates enhance the productivity of the cyanobacterium Synechococcus sp in semicontinuous cultures. Cryptogamie Algol., 25, (2), 207−216, 2004.
Sakamoto, T., Bryant, D. A., Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch. Microbiol., 169, (1), 10−19, 1998.
Sarma, T. A., Ahuja, G., Khattar, J. I. S., Nutrient stress causes akinete differentiation in cyanobacterium Anabaena torulosa with concomitant increase in nitrogen reserve substances. Folia. Microbiol., 49, (5), 557−561, 2004.
Sassano, C. E. N., Gioielli, L. A., Ferreira, L. S., Rodrigues, M. S., Sato, S., Converti, A., Carvalho, J. C. M., Evaluation of the composition of continuously−cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioenerg. 34, (12), 1732−1738, 2010.
Scanlan, D. J., Mann, N. H., Carr, N. G., Effect of iron and other nutrient limitations on the pattern of outer membrane proteins in the cyanobacterium Synechococcus PCC7942. Arch. Microbiol., 152, (3), 224−228, 1989.
Schlebusch, M., Forchhammer, K., Requirement of the nitrogen starvation−induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl. Environ. Microb., 76, (18), 6101−6107, 2010.
Schwarz, R., Forchhammer, K., Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology+, 151, (8), 2503−2514, 2005.
Seckbach, J., Oren, A., Oxygenic photosynthetic microorganisms in extreme environments. in: Algae and cyanobacteria in extreme environments (Vol. 11), Springer, Netherlands, 3−25, 2007.
Sharma, Y. C., Singh, B., Korstad, J., A critical review on recent methods used for economically viable and eco−friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem., 13, (11), 2993−3006, 2011.
Shukla, S. P., Kashyap, A. K., An assessment of biopotential of three cyanobacterial isolates from Antarctic for carotenoid production. Indian J. Biochem. Bio., 40, (5), 362−366, 2003.
Singh, A. K., McIntyre, L. M., Sherman, L. A., Microarray analysis of the genome−wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol., 132, (4), 1825−1839, 2003.
Small, D. P., Huner, N. P. A., Wan, W. K., Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33, (4), 298−308, 2012.
Snyder, D. S., Brahamsha, B., Azadi, P., Palenik, B., Structure of compositionally simple lipopolysaccharide from marine Synechococcus. J. Bacteriol., 191, (17), 5499−5509, 2009.
Stanier, R. Y., Kunisawa, R., Mandel, M., Cohenbaz.G. Purification and properties of unicellular blue−green algae (Order Cchroococcales). Bacteriol. Rev., 35, (2), 171−205, 1971.
Su, C. M., Hsueh, H. T., Chen, H. H., Chu, H., Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere, 88, (6), 706−711, 2012.
Su, C. M., Hsueh, H. T., Chen, H. H., Chu, H., Effects of nitrogen availability on the bioenergy production potential and CO2 fixation of Thermosynechococcus CL−1 under continuous cultivation. Aerosol Air Qual. Res., 13, (4), 1321−1330, 2013.
Sugita, C., Ogata, K., Shikata, M., Jikuya, H., Takano, J., Furumichi, M., Kanehisa, M., Omata, T., Sugiura, M., Sugita, M., Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth. Res., 93, (1−3), 55−67, 2007.
Suzuki, E., Ohkawa, H., Moriya, K., Matsubara, T., Nagaike, Y., Iwasaki, I., Fujiwara, S., Tsuzuki, M., Nakamura, Y., Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl. Environ. Micro., 76, (10), 3153−3159, 2010.
Suzuki, E., Umeda, K., Nihei, S., Moriya, K., Ohkawa, H., Fujiwara, S., Tsuzuki, M., Nakamura, Y., Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. BBA−Gen. Subjects., 1770, (5), 763−773, 2007.
Takano, H., Takeyama, H., Nakamura, N., Sode, K., Burgess, J. G., Manabe, E., Hirano, M., Matsunaga, T., CO2 removal by high−density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light−diffusing optical fibers. Appl. Biochem. Biotech., 34−35, (1), 449−458, 1992.
Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., Karube, I., Carbon−dioxide fixation by a unicellular green−alga Oocystis sp. J. Biotechnol., 25, (3), 261−267, 1992.
Theiss, C., Schmitt, F.−J., Pieper, J., Nganou, C., Grehn, M., Vitali, M., Olliges, R., Eichler, H. J., Eckert, H.−J., Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J. Plant Physiol., 168, (12), 1473−1487, 2011.
Timmermans, K. R., van der Wagt, B., Veldhuis, M. J. W., Maatman, A., de Baar, H. J. W., Physiological responses of three species of marine pico−phytoplankton to ammonium, phosphate, iron and light limitation. J. Sea Res., 53, (1–2), 109−120, 2005.
Toledo−Cervantes, A., Morales, M., Novelo, E., Revah, S., Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresource Technol., 130, (0), 652−658, 2013.
Tomaselli, L., The microalgal cell. in: Handbook of microalgal culture: biotechnology and applied phycology, Wiley Blackwell, USA, 3−19, 2004.
Tomaselli, L., Boldrini, G., Margheri, M. C., Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J. Appl. Phycol., 9, (1), 37−43, 1997.
Travieso, L., Hall, D. O., Rao, K. K., Benı́tez, F., Sánchez, E., Borja, R., A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int. Biodeter. Biodegr., 47, (3), 151−155, 2001.
Troshina, O., Serebryakova, L., Sheremetieva, M., Lindblad, P., Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int. J. Hydrogen Energ., 27, (11–12), 1283−1289, 2002.
Utkilen, H. C., Magnesium−limited growth of the cyanobacterium Anacystis nidulans. J. Gen. Microbiol.. 128, (8), 1849−1862, 1982.
Vargas, M. A., Rodríguez, H., Moreno, J., Olivares, H., Campo, J. A. D., Rivas, J., Guerrero, M. G., Biochemical composition and fatty acid content of filamentous nitrogen−fixing cyanobacteria. J. Phycol., 34, (5), 812−817, 1998.
Varun, Bhat, I. K., Prakash, R., LCA of renewable energy for electricity generation systems—a review. Renew. Sust. Energ. Rev., 13, (5), 1067−1073, 2009.
Vincent, W., Cold tolerance in cyanobacteria and life in the Cryosphere. in: Algae and cyanobacteria in extreme environments (Vol. 11), Springer, Netherlands, 287−301, 2007.
Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S., Richmond, A., Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2, (3), 175−185, 1982.
Vonshak, A., Guy, R., Guy, M., The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch. Microbiol., 150, (5), 417−420, 1988.
Wang, B., Li, Y., Wu, N., Lan, C., CO2 bio−mitigation using microalgae. Appl. Microbiol. Biotechnol., 79, (5), 707−718, 2008.
Wang, H. L., Postier, B. L., Burnap, R. L., Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem., 279, (7), 5739−5751, 2004.
Wang, J. L., Chen, C., Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 27, (2), 195−226, 2009.
Waterbury, J., The cyanobacteria—isolation, purification and identification. in: The prokaryotes, Springer, US, 1053−1073, 2006.
Wellburn, F. A. M., Wellburn, A. R., Senger, H., Changes in Ultrastructure and photosynthetic capacity within Scenedesmus−obliquus mutants−C−2−A', mutant−C−6−D, and mutant−C−6−E on transfer from dark−grown to illuminated conditions. Protoplasma, 103, (1), 35−54, 1980.
Westerman, M., Ernst, A., Brass, S., Böger, P., Wehrmeyer, W., Ultrastructure of cell wall and photosynthetic apparatus of the phycobilisome−less Synechocystis sp. strain BO 8402 and phycobilisome−containing derivative strain BO 9201. Arch. Microbiol., 162, (4), 222−232, 1994.
Williams, P. J. l. B., Laurens, L. M. L., Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci., 3, (5), 554−590, 2010.
Woitzik, D., Weckesser, J., Jürgens, U. J., Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307. J. Gen. Microbiol.. 134, (3), 619−627, 1988.
Woodger, F. J., Badger, M. R., Price, G. D., Inorganic carbon limitation induces transcripts encoding components of the CO2−concentrating mechanism is Synechococcus sp. PCC7942 through a redox−independent pathway. Plant Physiol., 133, (4), 2069−2080, 2003.
Woodger, F. J., Badger, M. R., Price, G. D., Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiol., 139, (4), 1959−1969, 2005.
Wu, G. F., Shen, Z. Y., Wu, Q. Y., Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC6803. Enzyme Microb. Tech., 30, (6), 710−715, 2002.
Xu, Y., Tiago Guerra, L., Li, Z., Ludwig, M., Charles Dismukes, G., Bryant, D. A., Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab. Eng., 16, (0), 56−67, 2013.
Yamada, T., Sakaguchi, K., Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol., 132, (1), 10−13, 1982.
Yamauchi, Y., Kaniya, Y., Kaneko, Y., Hihara, Y., Physiological Roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. J. Bacteriol., 193, (15), 3702−3709, 2011.
Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J., Carbon metabolism and energy conversion of Synechococcus sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J. Appl. Phycol., 24, (4), 657−668, 2012.
Yocum, C. F., The calcium and chloride requirements of the O2 evolving complex. Coordin. Chem. Rev., 252, (3–4), 296−305, 2008.
Yoo, S.−H., Keppel, C., Spalding, M., Jane, J.−l., Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. PCC6803. Int. J. Biol. Macromol., 40, (5), 498−504, 2007.
Yu, J. W., Price, G. D., Badger, M. R., Characterization of CO2 and HCO3− uptake during steady−state photosynthesis in the cyanobacterium Synechococcus PCC7942. Aust. J. Plant Physiol., 21, (2), 185−195, 1994.
Zarrouk, C., Contribution à l'étude d'une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler, 1966.
Zhang, K., Kurano, N., Miyachi, S., Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat−plate photobioreactor. Bioproc. Biosyst. Eng., 25, (2), 97−101, 2002.
Zhang, K., Miyachi, S., Kurano, N., Evaluation of a vertical flat−plate photobioreactor for outdoor biomass production and carbon dioxide bio−fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol., 55, (4), 428−433, 2001.
Zhou, G. J., Peng, F. Q., Zhang, L. J., Ying, G. G., Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. R., 19, (7), 2918−2929, 2012a.
Zhou, N., Zhang, Y. M., Gong, X. W., Wang, Q. H., Ma, Y. H., Ionic liquids−based hydrolysis of Chlorella biomass for fermentable sugars. Bioresource Technol., 118, 512−517, 2012b.
Zou, N., Zhang, C., Cohen, Z., Richmond, A., Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur. J. Phycol., 35, (2), 127−133, 2000.
Zuber, H., Structure of light−harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem. Sci., 11, (10), 414−419, 1986.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw