進階搜尋


下載電子全文  
系統識別號 U0026-2401201817391700
論文名稱(中文) 蚊子吸血機制來發展最佳化仿生微幫浦
論文名稱(英文) Development of a biomimetic micropump with blood-sucking mechanism of mosquitoes
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 1
出版年 107
研究生(中文) 高瑞鴻
研究生(英文) Ruei-Hung Kao
學號 p48991078
學位類別 博士
語文別 英文
論文頁數 128頁
口試委員 指導教授-呂宗行
召集委員-李約亨
口試委員-葉思沂
口試委員-鄭仁杰
口試委員-黃啟鐘
口試委員-陳鴻瑩
中文關鍵字 微幫浦  壓電器  蚊子  仿生  聚二甲基矽氧烷  釹鐵硼磁鐵 
英文關鍵字 micropump  PZT  mosquitoes  biomimetic  PDMS  Fe-PDMS  Nd-Feb magnet 
學科別分類
中文摘要 本研究利用蚊子吸血機制,發展出新型仿生型微幫浦可與蚊子吸血效率一樣高達36%。此微幫浦用微機電技術製作而成,主要使用PDMS與玻璃製造微管道晶片,並使用Fe-PDMS作為致動薄膜,再使用Nd-FeB磁鐵與壓電片驅動Fe-PDMS薄膜,配合最佳化致動波型產生淨流量。本文首先利用Lump mode理論配合田口法,並配合數值模擬研究此微幫浦,目的是改良蚊子口器尺寸並找到最佳化的波型,而Lump modl理論值與數值模擬僅能在完全發展流場互相符合,但是理論所設計的尺寸仍可用於實驗。本文實驗的方式除了使用理論設計的尺寸,也配合田口法與不對稱致動找出最佳波型,實驗結果顯示,最大流量23.5 μL/min且效率可達86%,幫浦的背壓可達2.9 kPa。
英文摘要 This study presents a novel bionic micropump, which mimics blood-suck mechanism of mosquitos with a similar high efficiency of 36%. This micropump is produced by using Micro-Electro-Mechanical System (MEMS) technology, PDMS (polydimethylsiloxane) to fabricate the micro channel, and the actuator membrane made by Fe-PDMS. The micropump employs an Nd-FeB permanent magnet and PZT to actuate the Fe-PDMS membrane to generate flow rate. Lumped model theory and Taguchi method are used for numerical simulation of fully developed flow in the micropump. Also focused in this study is to change the size of mosquito mouth to identify the best waveform for transient flow. The results can be used for the experimental verification. In addition to using theoretical design of the channel size, also combine with Taguchi method and asymmetric actuation to find the optimization actuation waveform, according to the experimental result, the maximum pumping flowrate is 23.5 μL/min and efficiency is 86%, moreover, the back pressure can achieve 2.9 kPa.
論文目次 摘要 I
ABSTRACT VI
誌謝 VII
CONTENTS VIII
LIST OF TABLES XI
LIST OF FIGURES XII
NOMENCLATURE XX
CHAPTER Ⅰ 1
INTRODUCTION 1
1.1 Review of Micropumps 2
1.2 Mechanism of Mosquitoes 4
1.3 Application of mosquito blood sucking mechanism 6
1.4 Motivation and purpose 8
CHAPTER Ⅱ 24
Theoretical and Numerical simulation of the micropump 24
2.1 Lump model analysis 24
2.2 Numerical simulation analysis 30
2.3 The comparison between numerical simulation and Lump model 37
2.4 The pulsating flow field from PP to outlet 39
CHAPTER Ⅲ 71
Experimental Process and Setup 71
3.1 Photolithography processes 71
3.2 Fe-PDMS and PDMS fabrication procedures 74
3.3 Experimental setup 75
CHAPTER Ⅳ 89
Experimental Results and Discussion 89
4.1 The effect of magnet position 89
4.2 The Effect of Bp on Flowrate 91
4.3 The Flow Visualization and Membrane Deformation of Micropump 92
CHAPTER Ⅴ 117
Conclusion 117
REFERENCE 120
PUBLICATION LIST 127
VITA 128
參考文獻 [1] Feynman R.P., 1960, "There's plenty of room at the bottom," Engineering and science, 23(5), pp. 22-36.
[2] Gravesen P., Branebjerg J., and Jensen O. S., 1993, "Microfluidics - A review," Journal of Micromechanics and Microengineering, 3(4), pp. 168-182.
[3] Laser D. J., and Santiago J. G., 2004, "A review of micropumps," Journal of Micromechanics and Microengineering, 14(6), pp. R35-R64.
[4] Brian D. I., and Suresh V. G., 2008, "Recent advances in microscale pumping technologies: a review and evaluation," Microfluidics and Nanofluidics, 5(2), pp. 145-174.
[5] Nisar A., Nitin A., Mahaisavariya B., and Tuantranont A., 2008, "MEMS-based micropumps in drug delivery and biomedical applications," Sensors and Actuators B: Chemical, 130(2), pp. 917-942.
[6] Majid N., 2009, "Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review," Microfluidics and Nanofluidics, 7(5), p. 599.
[7] Anthony K. A., Lai H., Ben R. U., and Folch A., 2011, "Microvalves and micropumps for BioMEMS," Micromachines, 2(2), pp. 179-220.
[8] Yang K. S., Chao T. F., Chen I. Y., Wang C. C., and Shyu J. C., 2012, "A comparative study of nozzle/diffuser micropumps with novel valves," Molecules, 17(2), pp. 2178-2187.
[9] Nguyen N. T., SAM Shaegh, Navid K., and Phan D. T., 2013, "Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology," Advanced drug delivery reviews, 65(11), pp. 1403-1419.
[10] Stevenson C. L., Santini J. T, and Langer R., 2012, "Reservoir-based drug delivery systems utilizing microtechnology," Advanced drug delivery reviews, 64(14), pp. 1590-1602.
[11] Paul S. R., Nayak S. K, Anis A., and Pal K., 2016, "MEMS-Based Controlled Drug Delivery Systems: A Short Review," Polymer-Plastics Technology and Engineering, 55(9), pp. 965-975.
[12] Hatch A., Kamholz A. E., Holman G., Yager P., and Bohringer K. F, 2001, "A ferrofluidic magnetic micropump," Journal of Microelectromechanical systems, 10(2), pp. 215-221.
[13] Pan T., McDonald S. J, Kai E. M, and Ziaie B., 2005, "A magnetically driven PDMS micropump with ball check-valves," Journal of Micromechanics and Microengineering, 15(5), p. 1021.
[14] Nagel J. J, Mikhail G., Noh H., and Koo J., "Magnetically actuated micropumps using an Fe-PDMS composite membrane," Proc. Proc. SPIE, Smart Structures and Materials, p. 617213.
[15] Shen M, Yamahata C, and Gijs M. A. M., 2008, "A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump," Journal of Micromechanics and Microengineering, 18(2), p. 025031.
[16] Feldmann M, Demming S, and Büttgenbach S, "Novel electro magnetic micro pump," Proc. Proc. SPIE, p. 67990T.
[17] Zhi C., Shinshi T., and Uehara M., "Design of a micro pump actuator using a thin film permanent magnet," Proc. ICMT 2012 - 16th International Conference on Mechatronics Technology, pp. 29-34.
[18] Ni J., Wang B., Chang S., and Lin Q., 2014, "An integrated planar magnetic micropump," Microelectronic Engineering, 117, pp. 35-40.
[19] D. T. Gong, D. C. Pan, and T. S. Leu, 2012, "A Computational and Experimental Study of Phase Difference Effects on the Flow rate of Peristaltic Micropumps with Pumping Chambers in Series and Parallel Configurations," National Cheng Kung University, IAA.
[20] P. C. Jiang, and T. S. Leu, 2009, "Fe-PDMS composite membrane for microfluidic chip applications," National Cheng Kung University, IAA.
[21] Teymoori M. M., and Abbaspour-Sani E., 2002, "A novel electrostatic micromachined pump for drug delivery systems," Proc. Semiconductor Electronics, Proceedings. ICSE, IEEE International Conference, pp. 105-109.
[22] Astle A. A., Kim H. S., Bernal L. P., Najafi K., and Washabaugh P. D., 2007, "Theoretical and experimental performance of a high frequency gas micropump," Sensors and Actuators, A: Physical, 134(1), pp. 245-256.
[23] Fathalilou M., Motallebi A., Yagubizade H., Rezazadeh Gh, Shirazi K, and Alizadeh Y, 2009, "Mechanical behavior of an electrostatically-actuated microbeam under mechanical shock," Journal of Solid Mechanics, 1(1), pp. 45-57.
[24] Patrascu M., Gonzalo-Ruiz J., Goedbloed M., Brongersma S. H., and Crego-Calama M., 2012, "Flexible, electrostatic microfluidic actuators based on thin film fabrication," Sensors and Actuators, A: Physical, 186, pp. 249-256.
[25] Kim H., Astle A. A., Najafi K., Bernal L. P., and Washabaugh P. D., 2015, "An integrated electrostatic peristaltic 18-stage gas micropump with active microvalves," Journal of Microelectromechanical Systems, 24(1), pp. 192-206.
[26] Smits J. G., 1990, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators: A. Physical, 21(1-3), pp. 203-206.
[27] Olsson A., Enoksson P., Stemme G., and Stemme E., 1997, "Micromachined flat-walled valveless diffuser pumps," Journal of Microelectromechanical Systems, 6(2), pp. 161-166.
[28] Koch M., Evans A. G. R., and Brunnschweiler A., 1998, "The dynamic micropump driven with a screen printed PZT actuator," Journal of Micromechanics and Microengineering, 8(2), pp. 119-122.
[29] Van Lintel H. T. G., Van De Pol F. C. M., and Bouwstra S., 1988, "A piezoelectric micropump based on micromachining of silicon," Sensors and Actuators, 15(2), pp. 153-167.
[30] Park J. H., Yoshida K., and Yokota S., 1999, "Resonantly driven piezoelectric micropump Fabrication of a micropump having high power density," Mechatronics, 9(7), pp. 687-702.
[31] Li S., and Chen S., 2003, "Analytical analysis of a circular PZT actuator for valveless micropumps," Sensors and Actuators, A: Physical, 104(2), pp. 151-161.
[32] Chiarot P., Sullivan P., and Mrad R. B., "The design and analysis of piezoelectrically actuated microfluidic systems," Proc. American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS), pp. 401-409.
[33] C. J. Hsu, and H. J. Sheen, 2009, " A microfluidic flow-converter based on a double-chamber planar micropump ," Microfluid Nanofluid, 6: 669.
[34] K. S. Yang, T. F. Chao, I. Y. Chen, C. C. Wang and J. C. Shyu, 2012, "A comparative study of nozzle/diffuser micropumps with novel valves," Molecules, 17(2), pp. 2178-2187..
[35] Wego A., Glock H. W., Pagel L., and Richter S., 2001, "Investigations on thermo-pneumatic volume actuators based on PCB technology," Sensors and Actuators, A: Physical, 93(2), pp. 95-102.
[36] Carmona M., Marco S., Samitier J., Acero M. C., Plaza J. A., and Esteve J., 2003, "Modeling the thermal actuation in a thermo-pneumatic micropump," Journal of Electronic Packaging, Transactions of the ASME, 125(4), pp. 527-530.
[37] Liao Hsin-Hung, Liao WC, and Yang YJ, 2008, "Fabrication and Characterization of Thermo-pneumatic Peristaltic Micropumps," Journal of Solid Mechanics, 1, pp. 45-57.
[38] Bardaweel H. K., and Bardaweel S. K., 2013, "Dynamic simulation of thermopneumatic micropumps for biomedical applications," Microsystem Technologies, 19(12), pp. 2017-2024.
[39] Chee P. S., Nafea M., Leow P. L., and Ali M. S. M., 2016, "Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit," Journal of Mechanical Science and Technology, 30(6), pp. 2659-2665.
[40] Y. J. Song, and T. S. Zhao, 2001, "Modelling and test of a thermally-driven phase-change nonmechanical micropump," Journal of micromechanics and microengineering, 11(6), p. 713.
[41] Saidi M. S., Saidi M. H., Pirouzpanah S., and Nikparto A., "Thermo-hydrodynamic modeling of a single bubble nozzle-diffuser phase change micropump," Proc. Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, pp. 1237-1243.
[42] Aravind T., Praveen Kumar S., Raj G. K. F., Prasanth P., and Gobinath P. S., "A novel thermopneumatic based micropump and microvalve using phase change liquid," Proc. ICSSS 2013, pp. 66-69.
[43] Bodén R., Ogden S., and Hjort K., 2014, "Microdispenser with continuous flow and selectable target volume for microfluidic high-pressure applications," Journal of Microelectromechanical Systems, 23(2), pp. 452-458.
[44] B. D. Liu, J. C. Sun, D. S. Li, J. Zheg, and Oh Kwang W. O., 2016, "A high flow rate thermal bubble-driven micropump with induction heating," Microfluidics and Nanofluidics, 20(11), p. 155.
[45] Jeong O. C., Park S. W., Yang S. S., and Pak J. J., 2005, "Fabrication of a peristaltic PDMS micropump," Sensors and Actuators, A: Physical, 123-124, pp. 453-458.
[46] Huang C. W., Huang S. B., and Lee G. B., 2006, "Pneumatic micropumps with serially connected actuation chambers," Journal of Micromechanics and Microengineering, 16(11), pp. 2265-2272.
[47] Wang C. H., and Lee G. B., 2006, "Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels," Journal of Micromechanics and Microengineering, 16(2), pp. 341-348.
[48] Huang S. B., Wu M. H., Cui Z., Cui Z., and Lee G. B., 2008, "A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance," Journal of Micromechanics and Microengineering, 18(4).
[49] Zhang W., Lin S., Wang C., Hu J., Li C., Zhuang Z., Zhou Y., Mathies R. A., and Yang C. J., 2009, "PMMA/PDMS valves and pumps for disposable microfluidics," Lab on a Chip, 9(21), pp. 3088-3094.
[50] Forster F. K., and Williams B. E., "Parametric design of fixed-geometry microvalves - The Tesser valve," Proc. ASME International Mechanical Engineering Congress and Exposition, Proceedings, pp. 431-437.
[51] Gamboa A. R., Morris C. J., and Forster F. K., 2004, "Improvements in fixed-valve micropump performance through shape optimization of valves," Journal of Fluids Engineering, Transactions of the ASME, 127(2), pp. 339-346.
[52] Gamboa A. R., and Forster F. K., "Is there a best fixed-geometry valve for micropumps?," Proc. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, pp. 319-324.
[53] Zhang S., Winoto S. H., and Low H. T., "Performance simulations of Tesla microfluidic valves," Proc. Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems 2007, pp. 15-19.
[54] Mohammadzadeh K., Kolahdouz E. M., Shirani E., and Shafii M. B., 2012, "Numerical investigation on the effect of the size and number of stages on the tesla microvalve efficiency," Journal of Mechanics, 29(3), pp. 527-534.
[55] Ahn S. H., and Kim Y. K., 1998, "Fabrication and experiment of a planar micro ion drag pump," Sensors and Actuators, A: Physical, 70(1-2), pp. 1-5.
[56] Kamboh S. A., Labadin J., and Rigit A. R. H., 2013, "Computational modeling and simulation of electro-hydrodynamic (EHD) ion-drag micropump with planar emitter and micropillar collector electrodes," Journal of Physics: Conference Series, 418(1).
[57] S. L. Zeng, C. H. Chen, James C., Mikkelsen Jr., and Santiago J. G., 2001, "Fabrication and characterization of electroosmotic micropumps," Sensors and Actuators B: Chemical, 79(2), pp. 107-114.
[58] Reichmuth D. S., Chirica G. S., and Kirby B. J., 2003, "Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives," Sensors and Actuators, B: Chemical, 92(1-2), pp. 37-43.
[59] Urbanski J. P., Thorsen T., Levitan J. A., and Bazant M. Z., 2006, "Fast ac electro-osmotic micropumps with nonplanar electrodes," Applied Physics Letters, 89(14).
[60] Chang S. T., Paunov V. N., Petsev D. N., and Velev O. D., 2007, "Remotely powered self-propelling particles and micropumps based on miniature diodes," Nature Materials, 6(3), pp. 235-240.
[61] Huang L., Wang W., Murphy M. C., Lian K., and Ling Z. G., 2000, "LIGA fabrication and test of a DC type magnetohydrodynamic (MHD) micropump," Microsystem Technologies, 6(6), pp. 235-240.
[62] Jang J., and Lee S. S., 2000, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors and Actuators, A: Physical, 80(1), pp. 84-89.
[63] Kim B. H., Seo E. S., Lim J. H., and Lee S. J., 2012, "Synchrotron X-ray microscopic computed tomography of the pump system of a female mosquito," Microscopy Research and Technique, 75(8), pp. 1051-1058.
[64] Kim B. H., Kim H. K., and Lee S. J., 2011, "Experimental analysis of the blood-sucking mechanism of female mosquitoes," Journal of Experimental Biology, 214(7), pp. 1163-1169.
[65] Mochizuki O., and Kikuchi K., "A flow of blood cells in the bio-pump system of a mosquito," Proc. Int. Symp. Transport Phenomena-16, Prague.
[66] Kikuchi K., and Mochizuki O., 2011, "Micro-PIV (micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito," Measurement Science and Technology, 22(6).
[67] Tsuchiya K., Nakanishi N., and Nakamachi E., "Development of blood extraction system for health monitoring system," Proc. Proceedings of SPIE - The International Society for Optical Engineering, pp. 257-265.
[68] Kim B. H., Kim I. C., Kang Y. J., Ryu J., and Lee S. J., 2014, "Effect of phase shift on optimal operation of serial-connected valveless micropumps," Sensors and Actuators, A: Physical, 209, pp. 133-139.
[69] Y. H. Liu, and T. S. Leu, 2014, "Development of Biomimetic Micropump with Blood-sucking Mechanism of Mosquitoes," National Cheng Kung University, IAA.
[70] Ahmadian M. T., and Mehrabian A., 2006, "Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps," Journal of Physics: Conference Series, 34(1), pp. 379-384.
[71] Ullmann A., 1998, "The piezoelectric valve-less pump - Performance enhancement analysis," Sensors and Actuators, A: Physical, 69(1), pp. 97-105.
[72] Olsson A., Stemme G., and Stemme E., 1999, "A numerical design study of the valveless diffuser pump using a lumped-mass model," Journal of Micromechanics and Microengineering, 9(1), p. 34.
[73] Lu S. L., and Tsui Y. Y., 2007, "A numerical design study of the valveless diffuser pump using a lumped-mass model," National Chiao Tung University.
[74] Tsui Y. Y., and Lu S. L., 2008, "Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses," Sensors and Actuators, A: Physical, 148(1), pp. 138-148.
[75] Wu S. E., and Tsui Y. Y., 2008, "Analysis of the flow in double-chamber valveless micropumps," National Chiao Tung University.
[76] Tsui Y. Y., and Wu S. E., 2009, "Modeling of valveless micropumps," Numerical Heat Transfer; Part A: Applications, 56(9), pp. 727-745.
[77] Chang T. C., and Tsui Y. Y., 2009, "Analysis of low-compression ratio peristaltic micropump," National Chiao Tung University.
[78] Tsui Y. Y., and Chang T. C., 2012, "A novel peristaltic micropump with low compression ratios," International Journal for Numerical Methods in Fluids, 69(8), pp. 1363-1376.
[79] Sobey I. J., 1982, "Oscillatory flows at intermediate Strouhal number in asymmetric channels," Journal of Fluid Mechanics, 125, pp. 359-373.
[80] Majid N., 2009, "Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review," Microfluid Nanofluid, 7(5), pp. 599.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw