進階搜尋


下載電子全文  
系統識別號 U0026-2401201813320500
論文名稱(中文) 無人機航測製圖實證精度評估
論文名稱(英文) Empirical Accuracy Assessment of UAV Photogrammetric Mapping
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 106
學期 1
出版年 107
研究生(中文) 郭雪菲
研究生(英文) Shofiyatul Qoyimah
電子信箱 shofiyatulqoyimah@gmail.com
學號 P66057034
學位類別 碩士
語文別 英文
論文頁數 160頁
口試委員 指導教授-曾義星
口試委員-楊明德
口試委員-徐百輝
中文關鍵字 none 
英文關鍵字 Accuracy assessment  aerial triangulation  DSM and orthophoto 
學科別分類
中文摘要 none
英文摘要 In recent years, over hundreds of UAV systems have been developed in some classes and fit the photogrammetry community need. The technology of UAV photogrammetry is widely available by the presence of passive imaging sensor in optical, Near Infrared (NIR) and Thermal Infrared (TIR) systems. For mapping purposes, the variety of user-friendly software can improve the final products generating process becomes more automatic. The product quality should be controlled by the users and therefore, it is necessary to understand the influencing and the most important factors in the process of generating products, especially when the products do not meet the quality requirement.
This thesis will show and discuss the results of analysis of the influencing and the most important factors on the block adjustment as well as DSM and orthophoto generating processes. In block adjustment process, there are several tests are arranged to investigate the influence of flight altitude, double block configuration, image exposure position and camera calibration. Several tests are also designed to check the influence of flight altitude and double block configuration on the generated DSM and orthophoto.
Aerial images of calibration field at NanGang Industrial Area, Nantou County, Taiwan were acquired using two different UAV systems. Totally, 15 data sets in different flight configurations are processed in block adjustment using 3 different scenarios, based on the presence of GCPs and image exposure position. In block adjustment process, the most influencing factors are the image exposure position accuracy and camera calibration process. In spite of improving the resulting accuracy, presenting accurate image exposure position, decreasing the flight altitude and utilizing double block configuration cannot compress the remaining systematic error. The presence of 5 GCPs can significantly minimize the systematic error on the results in which have inaccurate image exposure position. However, utilizing 5 GCPs without camera calibration in adjustment process cannot suppress the remaining systematic error. The changes of flight altitude varying with the image exposure position accuracy. Utilizing single block tends to reduce the achievable accuracy.
In DSM and orthophoto generation, increase the flight altitude can reduce the accuracy. Applying double block can improve the visualization and reduce the over-exposure effect on digital orthophoto. Other remaining factors are discovered influence the DSM and orthophoto qualities, including camera and flight settings, the products resolution and the light conditions.
論文目次 ABSTRACT I
ACKNOWLEDGEMENT III
CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objective 4
1.3 Research Approach 4
1.4 Thesis Structure 5
Chapter 2 Literature Review 6
2.1 UAV Photogrammetry 6
2.1.1 Definition of UAV Photogrammetry 6
2.1.2 History of UAV Photogrammetry 7
2.1.3 UAV Photogrammetry System 10
2.1.4 UAV Photogrammetry Data Processing 15
2.2 Mapping Application Using UAV Photogrammetry 16
2.2.1 Accuracy and Quality in UAV Photogrammetric Mapping 16
2.2.2 Assessment of UAV Photogrammetric Mapping Accuracy 17
2.2.3 Assessment of UAV Photogrammetric Mapping Quality 18
2.2.4 Professional Mapping Purpose 18
2.3 Digital Aerial Triangulation 20
2.4 Structure from Motion (SfM) 21
Chapter 3 Methodology 23
3.1 Research Area Description 23
3.2 Research Equipment 24
3.2.1 Hardware 24
3.2.2 Software 26
3.3 Research Materials 35
3.3.1 Aerial Images 35
3.3.2 Image Position and Orientation Data 37
3.3.3 Ground Control Point (GCP) 39
3.4 Research Workflow 41
3.4.1 Flight Planning 42
3.4.2 Aerial Image Acquisition 43
3.4.3 Camera Calibration and Image Lens Distortion Correction 44
3.4.4 Aerial Triangulation 48
3.4.5 DSM and Orthophoto Generation 50
Chapter 4 Results and Discussions 53
4.1 Camera Calibration and Image Lens Distortion Correction 53
4.1.1. Calibrated Interior Orientation Parameter 53
4.1.2. IOP Stability Analysis 58
4.1.3. Image Lens Distortion Correction 74
4.1.4. Discussion 76
4.2 Aerial Triangulation 79
4.2.1. Results of the 1st Experiment 79
4.2.2. Results of the 2nd Experiment 81
4.2.3. Influence of Flight Altitude on the Aerial Triangulation Accuracy 86
4.2.4. Influence of Double Block 91
4.2.5. Influence of GNSS Initial Position on the Aerial Triangulation Accuracy 98
4.2.6. Influence of Camera Calibration on the Aerial Triangulation Accuracy 103
4.3 DSM and Orthophoto Generation 106
4.3.1. The 1st Experiment 107
4.3.2. The 2nd Experiment 109
4.3.3. Influence of Flight Altitude on DSM and Orthophoto Accuracy 111
4.3.4. DSMs Quality Assessment 114
4.3.5. Orthophoto Visualization Comparison 122
4.4 Discussion 128
Chapter 5 Conclusions and Suggestions 132
5.1 Conclusions 132
5.2 Suggestions 134
REFERENCES 135
APPENDIX 147
參考文獻 Ackermann, F., Schade, H., 1993. Application of GPS for aerial triangulation. Photogrammatric Eng. Remote Sens. 59, 1625–1632.
Ackermann, R.J., 1996. Quality Control Procedure for Photogrammetric Digital Mapping. Int. Arch. Photogramm. Remote Sens. Vol. XXXI.
Agüera-Vega, F., Carvajal-Ramírez, F., Martinez-Carricondo, P., 2016. Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 143, 1–10. doi:10.1061/(ASCE)SU.1943-5428.0000206.
Arjomandi, D.M., 2007. Classification of Unmanned Aerial Vehicles. Univ. Adelaida.
ASPRS, 2015. ASPRS Positional Accuracy Standards for Digital Geospatial Data. Photogramm. Eng. Remote Sens. 81, 1–26. doi:10.14358/PERS.81.3.A1-A26
ASPRS, 2009. Guidelines for procurement of professional aerial imagery, photogrammetry, lidar and related remote sensor-based geospatial mapping services. Photogramm. Eng. Remote Sens. 1346–1365.
ASPRS/PDAD, 2013. Guideline for the In Situ Geometric Calibration of the Aerial Camera System. Photogramm. Eng. Remote Sens. 79, 590.
Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Cella, U.M. di, Roncella, R., Santise, M., 2017. Testing accuracy and repeatability of UAV blocks oriented with gnss-supported aerial triangulation. Remote Sens. 9, 1–23. doi:10.3390/rs9020172
Bento, M.D.F., 2008. Unmanned Aerial Vehicles : An Overview, insideGNSS.
Beyer, D. sr. tech. H.A., 1992. Geometric and Radiometric Analysis of a CCD-Camera Based Protogrammetric Close-Range System. ETH Zurich.
Boon, M.A., Greenfield, R., Tesfamichael, S., 2016. Wetland assessment using unmanned aerial vehicle (UAV) photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 41, 781–788. doi:10.5194/isprsarchives-XLI-B1-781-2016
Brown, D.C., 1971. Close-range camera calibration. Photogramm. Eng. doi:10.1.1.14.6358
Brown, D.C., 1969. Advanced Methods for the Calibration of Metric Cameras, in: Symposium on Computational Photogrammetry. Syracuse University, College of Forestry.
Carbonneau, P.E., Dietrich, J.T., 2017. Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. Earth Surf. Process. Landforms 42, 473–486. doi:10.1002/esp.4012
Colomina, I., Molina, P., 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 92, 79–97. doi:10.1016/j.isprsjprs.2014.02.013
Cramer, M., Przybilla, H.J., Zurhorst, A., 2017. UAV cameras: Overview and geometric calibration benchmark. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42, 85–92. doi:10.5194/isprs-archives-XLII-2-W6-85-2017
Cryderman, C., Bill Mah, S., Shufletoski, A., 2015. Evaluation of uav photogrammetric accuracy for mapping and earthworks computations. Geomatica 68, 309–317. doi:10.5623/cig2014-405
DeGarmo, M.T., 2004. Issues Concerning Integration of Unmanned Aerial Vehicles in Civil Airspace, Center for Advanced Aviation System Development. The MITRE Corporation, McLean.
Eisenbeiß, H., 2009. UAV photogrammetry. Inst. Photogramm. Remote Sens. doi:doi:10.3929/ethz-a-005939264
Eisenbeiß, H., 2008. UAV Photogrammetry in PLant Sciences and geology, in: 6th ARIDA Workshop on “Innovations in 3D Measurement, Modelling and Visualization.” Povo (Trento), Italy.
Everaerts, J., Lewyckyj, N., Fransaer, D., 2004. Pegasus: design of a stratospheric long endurance UAV system for remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXV, 29–33.
Faig, W., 1975. Calibration of close-range photogrammetry systems: Mathematical formulation. Photogramm Eng Rem S 41, 1479–1486.
Federal Geographical Data Committee, 1998. Geospatial Positioning Accuracy Standards Part 3 : National Standard for Spatial Data Accuracy. Natl. Spat. Data Infrastruct. doi:FGDC-STD-007.3-1998
flickr, 2013. QGIS - Map Showcase [WWW Document]. URL https://www.flickr.com/groups/qgis/pool/ (accessed 10.10.17).
Fraser, C.S., 2013. Automatic Camera Calibration in Close Range Photogrammetry. Photogramm. Eng. Remote Sens. 79, 381–388. doi:10.14358/PERS.79.4.381
Fritsch, D., 1995. Introduction into Digital Aerotriangulation. Photogramm. Week 165, 6.
Fryer, J.G., 2003. Lens Distortion for Close Range Photogrammetry. Univ. Newcastle.
Gerke, M., Przybilla, H.-J., 2016. Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns. Photogramm. - Fernerkundung - Geoinf. 17–30. doi:10.1127/pfg/2016/0284
Gluch, E., 1984. Geometric Calibration of two CCD-cameras used for digital image correlation on the Planicomp C100, in: International Archives of Photogrammetry & Remote Sensing 25 (Part A3). pp. 159–168.
Goncalves, J.A., Henriques, R., 2015. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 104, 101–111. doi:10.1016/j.isprsjprs.2015.02.009
Gruen, A., Maas, H.G., Keller, A., 1995. Kodak DCS200: A camera for high-accuracy measurements? Proc. SPIE - Int. Soc. Opt. Eng. 2598, 52–59. doi:10.1117/12.220923
Habib, A., Detchev, I., Kwak, E., 2014. Stability analysis for a multi-Camera photogrammetric system. Sensors (Switzerland) 14, 15084–15112. doi:10.3390/s140815084
Habib, A., Morgan, M., 2005. Stability analysis and geometric calibration of off-the-shelf digital cameras. Photogramm. Eng. Remote Sens. 71, 733–741.
Habib, A.F., 2005. Quantitative measures for the evaluation of camera stability. Opt. Eng. 44, 33605. doi:10.1117/1.1872840
Harwin, S., Lucieer, A., Osborn, J., 2015. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sens. 7, 11933–11953. doi:10.3390/rs70911933
Hieronymus, J., 2012. Comparison of Methods for Geometric Camera Calibration. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-B5, 595–599.
Hirschmuller, H., 2008. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Machiene Intell. 30, 328–341. doi:10.1109/CVPR.2005.56
Hongoh, D., Kajiwara, K., Honda, Y., 2001. Developing Ground Truth Measurement System using RC Helicopter and BRDF Model in Forest Area 3 . MODELS OF BI-DERECTIONAL REFLECTANCE. Asian Conf. Remote Sens.
Hoyle, D., 2001. ISO 9000: Quality Systems Handbook, Fourth. ed. Butterworth Heinemann, Oxford. doi:10.2345/0899-8205(2008)42[23:IQSH]2.0.CO;2
Jeong, H.H., Park, J.W., Kim, J.S., Choi, C.U., 2016. Assessing the accuracy of ortho-image using photogrammetric unmanned aerial system. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2016–Janua, 867–872. doi:10.5194/isprsarchives-XLI-B1-867-2016
Jones, B.G., Ask, R.., Bean, R.K., Cude, W.C., Druhot, G.S., Ellis, W.T., Miller, O.M., Tewinkel, G.C., Sanders, R.G., 1942. Definitions of Terms Used in MEPS-HC Questionnaires. Photogramm. Eng. Remote Sens. 8, 247–283.
Kapnias, D., Milenov, P., Kay, S., 2008. Guidelines for best practice and quality checking of ortho imagery, Joint Research Centre. doi:10.2788/36028
Karakoc, T.H., Ozerdem, M.B., Sogut, M.Z., Colpan, C.O., Altuntas, O., Acikkalp, E., 2016. Sustainable Aviation: Energy and Environmnetal Issues, Sustainable Aviation: Energy and Environmental Issues. Springer. doi:10.1007/978-3-319-34181-1_27
Kasser, M., Egels, Y., 2002. Digital photogrammetry. Taylor & Francis. doi:10.1007/3-540-29153-9
Kedzierski, M., Wierzbicki, D., 2015. Radiometric quality assessment of images acquired by UAV’s in various lighting and weather conditions. Meas. J. Int. Meas. Confed. 76, 156–169. doi:10.1016/j.measurement.2015.08.003
Kersten, T., 1999a. Digital Aerial Triangulation in Production - Experiences with Block Switzerland. Archives 1–10.
Kersten, T., 1999b. Results of digital aerial triangulation using different software packages. OEEPE Work. Autom. Digit. Photogramm. Prod. 1–9.
Kraus, K., 2007. Photogrammetry, Geometry from Images and Laser Scans.
Krzystek, P., Heuchel, T., Hirt, U., Petran, F., 1996. An integral approach to automatic aerial triangulation and automatic DEM generation. Int. Arch. Photogramm. Remote Sens.
Küng, O., Strecha, C., Beyeler, A., Zufferey, J.-C., Floreano, D., Fua, P., Gervaix, F., 2011. the Accuracy of Automatic Photogrammetric Techniques on Ultra-Light Uav Imagery. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-1/, 125–130. doi:10.5194/isprsarchives-XXXVIII-1-C22-125-2011
Küng, O., Strecha, C., Fua, P., Gurdan, D., Achtelik, M., Doth, K.-M., Stumpf, J., 2012. Simplified Building Models Extraction From Ultra-Light Uav Imagery. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-1/, 217–222. doi:10.5194/isprsarchives-XXXVIII-1-C22-217-2011
Lapine, L.A., 1990. Analytical Calibration of the Airborne Photogrammetric System Using A Priori Knowledge of the Exposure Station Obtained from Kinematic Global Positioning System Techniques. Columbus.
Lichti, D.D., Habib, A., Detchev, I., 2009. An Object-space Simulation Method for Low-cost Digital Camera Stability Testing. Photogramm. Eng. Remote Sensing 75, 1407–1414.
Long, N., Millescamps, B., Pouget, F., Dumon, A., Lachaussée, N., Bertin, X., 2016. Accuracy assessment of coastal topography derived from uav images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. XLI-B1, 1127–1134. doi:10.5194/isprsarchives-XLI-B1-1127-2016
Luhmann, T., Robson, S., Kyle, S., Harley, I., 2006. Close Range Photogrammetry, Collision. The International Compendium for Crash Research. doi:10.1111/phor.12114
MA, L., CHEN, Y., MOORE, K.L., 2004. Rational Radial Distortion Models of Camera Lenses With Analytical Solution for Distortion Correction. Int. J. Inf. Acquis. 1, 135–147. doi:10.1142/S0219878904000173
Mallon, J., Whelan, P.F., 2004. Precise radial un-distortion of images. Proc. - Int. Conf. Pattern Recognit. 1, 18–21. doi:10.1109/ICPR.2004.1333995
Mendes, T., Henriques, S., Catalão, J., Redweik, P., 2015. Photogrammetry with UAV ’ s : Quality Assessment of Open -Source Software for Generation of Ortophotos and Digital Surface Models. VIII Conf. Nac. Cartogr. e Geod. 1–8.
Merchant, D.C., 2012. Aerial Camera Metric Calibration – History and Status. ASPRS Annu. Conf. 10.
Merchant, D.C., 1972. Metric Calibration of the Aerial Photogrammetric System by the Method of Mixed Ranges. AFSC TR-72-178.
Mesas-Carrascosa, F.J., García, M.D.N., De Larriva, J.E.M., García-Ferrer, A., 2016. An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors (Switzerland) 16. doi:10.3390/s16111838
Mesas-Carrascosa, F.J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J.M., Borra-Serrano, I., López-Granados, F., 2015. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by uav to support site-specific crop management. Remote Sens. 7, 12793–12814. doi:10.3390/rs71012793
Micheletti, N., Chandler, J.H., Lane, S.N., 2015. Structure from Motion (SfM) Photogrammetry, Geomorphological Techniques. doi:10.5194/isprsarchives-XL-5-W4-37-2015
Miyatsuka, Y., 1996. Archaeological real-time photogrammetric system using digital still camera. Int. Arch. Photogramm. Remote Sens.
Nagai, M., Shibasaki, R., Manandhar, D., Zhao, H., 2004. Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD Sensor with IMU. Int. Arch. Photogramm. Remote Sensing. Vol. XXXV, 781–785.
Nehwall, B., 1969. Airborne camera: The world from the air and outer space. Hasting House, Trowbridge & London.
Nex, F., Remondino, F., 2014. UAV for 3D mapping applications: A review. Appl. Geomatics 6, 1–15. doi:10.1007/s12518-013-0120-x
Niethammer, U., Rothmund, S., James, M.R., Travelletti, J., Joswig, M., 2010. Uav - Based Remote Sensing of Landslides. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII, 496–501.
NLSC, 2014. 內政部國土測繪中心.
O’Connor, J., Smith, M.J., James, M.R., 2017. Cameras and settings for aerial surveys in the geosciences. Prog. Phys. Geogr. 41, 325–344. doi:10.1177/0309133317703092
Photometrix, 2017. Australis - Photometrix Photogrammetry Software [WWW Document]. URL http://www.photometrix.com.au/australis/ (accessed 10.7.17).
Photometrix, 2007. User Manual for Australis.
Pix4D, 2011. Pix4Dmapper - Pix4D [WWW Document]. URL https://pix4d.com/product/pix4dmapper/# (accessed 10.10.17).
Poser, J., 2012. Comparative Imagery Analysis of Non-Metric Cameras from Unmanned Aerial Survey Aircraft. Resour. Anal. 14, 20 pp. doi:10.1017/CBO9781107415324.004
QGIS User Group, 2009. QGIS - The Leading Open Dekstop GIS [WWW Document]. URL http://www.qgis.org/en/site/about/index.html (accessed 10.10.17).
Remondino, F., Fraser, C., 2006. Digital camera calibration methods: considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36, 266–272.
Rieke-Zapp, D., Tecklenburg, W., Peipe, J., Hastedt, H., Haig, C., 2009. Evaluation of the geometric stability and the accuracy potential of digital cameras - Comparing mechanical stabilisation versus parameterisation. ISPRS J. Photogramm. Remote Sens. 64, 248–258. doi:10.1016/j.isprsjprs.2008.09.010
Ruzgiene, B., Berteška, T., Gečyte, S., Jakubauskiene, E., Aksamitauskas, V.Č., 2015. The surface modelling based on UAV Photogrammetry and qualitative estimation. Meas. J. Int. Meas. Confed. 73, 619–627. doi:10.1016/j.measurement.2015.04.018
Schenk, T., 1996. Digital Aerial Triangulation. Int. Arch. Photogramm. Remote Sensing. Vol. XXXI, Part B3 735–745.
Sebari, I., Lahmami, H., Ettarid, M., 2011. Assessment and Comparison Of The Quality Of Digital Ortho-Images Generated From Digital Aerial Images And From Scanned Analogue Aerial Images Assessment and Comparison Of The Quality Of Digital Ortho-Images Generated From Digital Aerial Images And From Sc. FIG Work. Week.
SenseFly, 2016. eBee Plus, Aerial efficiency, photogrammetric accuracy [WWW Document]. senseFly a Parrot Co. URL https://www.sensefly.com/drones/ebee-plus.html (accessed 9.1.17).
SenseFly, T.T., 2016. eMotion 3 - insights.
Shortis, M., Robson, S., Beyer, H., 1998. Principal point behaviour and calibration parameter models for Kodak DCS cameras. Photogramm. Rec. 16, 165–186. doi:10.1111/0031-868X.00119
Shortis, M.R., Bellman, C.J., Robson, S., Johnston, G.J., Johnson, G.W., 2006. Stability of Zoom and Fixed Lenses used with Digital SLR Cameras. Int. Arch. Photogramm. Remote Sensing, Spat. Inf. Sci. 36, 285–290.
Shortis, M.R., Beyer, H.A., 1997. Calibration stability of the Kodak DCS420 and 460 cameras. Videometrics V, SPIE 3174, 94–105. doi:10.1117/12.279803
Shortis, M.R., Ogleby, C., Robson, S., 2001. Calibration modelling and stability testing for the Kodak DC200 series digital still camera. Proc. SPIE 4309, 148–153. doi:10.1117/12.410870
Skarlatos, D., Theodoridou, S., Glabenas, D., 2004. Archaeological Surveys in Greece Using Radio-controlled Helicopter, in: FIG Working Week. Athens.
Smith, J.S., Chandler, J., Rose, J., 2009. High spatial resolution data acquisition for the geosciences: kite aerial photography. Earth Surf. Process. Landforms 34, 155–161. doi:10.1002/esp
Snavely, N., Seitz, S.M., Szeliski, R., 2008. Modeling the world from Internet photo collections. Int. J. Comput. Vis. 80, 189–210. doi:10.1007/s11263-007-0107-3
SONY Corp., 2017. ILCE-7 Body / Kit Specifications [WWW Document]. URL https://www.sony.com/electronics/interchangeable-lens-cameras/ilce-7-body-kit/specifications (accessed 12.5.17).
Stocker, C., Nex, F., Koeva, M., Gerke, M., 2017. Quality Assessment of Combined Imu / Gnss Data for Direct Georeferencing in the Context of Uav-Based Mapping. Int. Arch. Photogramm. Remote SensingRemote Sens. Spat. Inf. Sci. XLII. doi:10.5194/isprs-archives-XLII-2-W6-355-2017
Stojic, M., Chandler, J., Ashrnore, P., Luce, J., 1998. The Assessment of Sediment Transport Rates by Automated Digital Photogrammetry. Photogramm. Eng. Remote Sens. 64, 387–395.
Strecha, C., Gool, L. Van, Fua, P., 2008. A generative model for true orthorectification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII, 303–308.
Strecha, C., Küng, O., Fua, P., 2012. Automatic Mapping from Ultra-Light UAV Imagery, in: EuroCOW 2012. pp. 2–5.
Tahar, K.N., 2015. Multi rotor UAV at different altitudes for slope mapping studies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 40, 9–16. doi:10.5194/isprsarchives-XL-1-W4-9-2015
Tecklenburg, W., Luhmann, T., Hastedt, H., 2001. Camera Modelling with Image-variant Parameters and Finite Elements. Opt. 3-D Meas. Tech. V 328–335.
Triggs, B., Mclauchlan, P., Hartley, R., Fitzgibbon, A., 2000. Bundle Adjustment — A Modern Synthesis, in: Vision Algorithms: Theory & Practice. Springer Verlag, pp. 298–375.
Tsanakas, J.A., Ha, L.D., Al Shakarchi, F., 2017. Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery. Renew. Energy 102, 224–233. doi:10.1016/j.renene.2016.10.046
Tsarovski, S., 2015. Accuracy Evaluation and Quality Control of Digital Orthomap-Sheets. FIG Work. Week.
van Blyenburgh, P., 2013. 2013-2014 RPAS Yearbook: Remotely Piloted Aircraft Systems: The Global Perspective 2013/2014. Paris, France.
Vozikis, E., 1983. Analytical Methods a N D Instruments for Mapping From Balloon. Photogramm. Rec. 11, 83–92.
Wackrow, R., Chandler, J.H., Bryan, P., 2007. Geometric consistency and stability of consumer-grade digital cameras for accurate spatial measurement. Photogramm. Rec. 22, 121–134. doi:10.1111/j.1477-9730.2007.00436.x
Wanzke, H., 1984. The Employment of A Hot-Air Ship for the Stereophotogrammetric Documentation of Antique Ruins. Int. Arch. Photogramm. Remote Sens. XXV, 746–756.
Weng, J., Cohen, P., Herniou, M., 1992. Camera Calibration with Distortion Models and Accuracy Evaluation. IEEE Trans. Pattern Anal. Machiene Intell. 14.
Wester‐Ebbinghaus, W., 1980. Aerial Photography By Radio Controlled Model Helicopter. Photogramm. Rec. 10, 85–92. doi:10.1111/j.1477-9730.1980.tb00006.x
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314. doi:10.1016/j.geomorph.2012.08.021
Whittlesley, J.H., 1970. Tethered Balloon for Archaeological Photos, In: Photogrammetric Engineering. Photogramm. Eng. 36, 181–186.
Wolf, P.R., Dewitt, B.A., 2000. Elements of Photogrammetry with Applications in GIS, 3rd ed. Mc Graw-Hill.
Woodcock, W.E., 1976. Aerial Reconnaissance and Photogrammetry with Small Cameras. Photogrammatric Eng. Remote Sens. 42, 503–511.
Wuming, Z., Guangjian, Y., Ning, W., Qiaozhi, L., Wei, Z., 2007. Automatic block generation and 3D line extraction in photogrammetric power line inspection. Int. Geosci. Remote Sens. Symp. 2920–2922. doi:10.1109/IGARSS.2007.4423455
Wzorek, M., Landen, D., Doherty, P., 2006. GSM Technology as a Communication Media for an Autonomous Unmanned Aerial Vehicle. 21st Bristol UAV Syst. Conf.
Zischinsky, T., Dorffner, L., Rottensteiner, F., 2000. Application of a New Model Helicopter System in Arquitectural Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIII Par, 959–965.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw