進階搜尋


下載電子全文  
系統識別號 U0026-2401201710342500
論文名稱(中文) 工業先導級純富氧燃燒之節能減排效益
論文名稱(英文) Energy Saving and Emission Reduction of Oxyfuel and Oxygen Enrichment Combustion at Industrial Pilot Scale
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 梁文軒
研究生(英文) Wen-Hsuan Liang
電子信箱 k2004328@hotmail.com
學號 N16031231
學位類別 碩士
語文別 中文
論文頁數 153頁
口試委員 指導教授-吳明勳
口試委員-侯順雄
口試委員-李約亨
口試委員-謝煒東
中文關鍵字 燃氣爐  富氧燃燒  純氧燃燒  節能減排 
英文關鍵字 Gaseous Furnace  Oxygen Enrichment Combustion  Oxyfuel Combustion  Energy Saving and Emission Reduction 
學科別分類
中文摘要 本研究首先針對100 kW純富氧燃氣試驗爐設計,如儀器、設備及管路等各項選用準則進行討論,接著燃氣爐量測系統規劃中包含溫度、壓力、流量、排放組成、火焰光譜以及火焰型態拍攝,量測工具選用以及其工作原理或者設計方法進行探討。燃氣試驗爐操作等步驟如前置準備、點火程序、運轉中調整、關爐程序以及操作後整理步驟依序列出。本研究也針對100 kW純富氧燃氣試驗爐進行零維、三維模擬,零維模擬將燃氣爐視為全混流反應器進行模擬;三維反應流模擬則針對燃氣爐進行空氣與富氧燃燒穩態模擬,探討不同氧化劑氧濃度條件下爐內熱流場及組成,且模擬溫度與實驗量測誤差可在12%以內。透過實驗以及模擬可得,富氧燃燒時其火焰相較空氣燃燒來的長,壁面溫度提升且溫度場更加均勻,氧化劑氧濃度由21%增加至26%,輻射熱傳效果增強近10倍,能源利用率也從83%提升至87%,煙道氣排放也減少了17.7%,驗證了富氧燃燒節能減排效益。純氧燃燒條件下其火焰顏色相較空氣與富氧燃燒,其藍焰比例大出許多,出口氮氧化物排放則僅有15 ppm,且煙道氣含有高濃度二氧化碳有助於對碳捕捉、封存等後處理製程。
英文摘要 The objective of this study was to quantified energy uiliztzation efficiency of oxygen enrichment combustion. First, according to the design 100 kW gaseous combustion furnace includes equipment, pipes, and measurement system selection. Develop a zero and three dimentional model for 100 kW gaseous combustion furnace. The result show that compare to air combustion, oxygen enrichment combustion get high temperature and residence time. The result from experiment show that increses oxygen concentration in oxidant, flame length and width will increses, more uniform wall temperature, and lower emmisions. The energy uiliztzation efficiency increased 4% when the oxygen concentration was increased from 21% to 26%. The flue gas emmisions compare to air combustion only have 82.4%. The flame color become daker under oxyfuel combustion. The NOx emission only has 15 ppm.
論文目次 摘要 i
誌謝 v
目錄 vi
表目錄 xi
圖目錄 xii
符號說明 xvii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
微富氧燃燒 2
純氧噴吹 4
純氧燃燒 5
1-3 研究目的 7
1-4 本文架構 8
第二章 100 kW純富氧燃氣試驗爐之設計 9
2-1 系統質能平衡計算 9
2-2 爐體設計 13
2-3 復熱器設計 18
2-4 燃燒機選用 22
2-5 氣體流路設計 24
2-5-1風機選用 28
2-5-2風管選用 29
2-5-3氣體供應 31
2-6 冷卻水流路設計 31
2-6-1泵選用 32
2-6-2冷卻水管選用 33
2-6-3冷卻水供應 33
2-7 電控系統設計 34
第三章 燃氣試驗爐量測系統規劃 38
3-1 溫度量測 38
3-1-1熱電偶量測原理 39
3-1-2溫度量測點 40
3-1-3不確定性分析 41
3-1-4熱電偶溫度修正 41
3-2 壓力量測 44
3-2-1壓力量測原理 44
3-2-2爐壓測點 46
3-2-3不確定性分析 46
3-3 流量量測 46
3-3-1流量量測原理 46
3-3-2氣體流量測點 51
3-3-3水流量測點 52
3-3-4不確定性分析 52
3-4 排放組成 52
3-4-1氣體分析原理 54
3-4-2取樣方法 57
3-4-3不確定性分析 59
3-5 爐內攝影機系統 60
3-5-1系統冷卻需求計算 61
3-5-2冷卻套筒設計 62
3-5-3攝影機與影像傳輸 66
3-6 以火焰光譜量測火焰溫度 67
3-6-1計算火焰溫度 68
3-6-2波長選取 69
3-7 數據擷取系統 72
第四章 試驗爐操作程序 73
4-1 操作前準備 73
4-2 空氣點火程序 77
4-3 純氧點火程序 77
4-4 運轉中調整程序 79
4-4-1丙烷流量調整 79
4-4-2助燃劑流量調整 80
4-4-3爐壓調整 81
4-4-4冷卻水流量調整 81
4-4-5冷卻水量補充 82
4-5 關爐程序 82
4-6 操作後整理 83
第五章數值模擬方法 84
5-1 零維模擬 84
5-1-1全混流反應器 84
5-1-2燃燒機理與邊界條件 85
5-2 三維模擬 86
5-2-1計算區間 86
5-2-2統御方程式 87
5-2-3物理模型 87
5-2-4網格建立 89
5-2-5邊界條件與初始設定 89
5-2-6數值方法 92
第六章 空氣、富氧與純氧燃燒特性 93
6-1 空氣燃燒 93
6-1-1數值模擬 93
6-1-2實驗量測 96
6-1-3實驗與模擬比較 98
6-2 富氧燃燒數值模擬 100
6-2-1零維模擬結果 100
6-2-2三維模擬之爐內溫度及組成 102
6-2-3三維模擬之出口排放 108
6-2-4實驗與模擬比較 109
6-3 富氧燃燒實驗 111
6-3-1固定殘餘氧 111
6-3-2固定當量比 120
6-4 富氧燃燒節能效益 126
6-5 O2/CO2純氧燃燒特性 127
6-5-1火焰型態 127
6-5-2爐內溫度 129
6-5-3出口排放 129
6-6 小結 132
第七章 結論與未來展望 134
7-1 結論 134
7-2 未來展望 136
參考文獻 137
附錄A 攝影機冷卻套筒工程圖 142
附錄B 取樣管工程圖 149
口試委員提問 152
參考文獻 [1] C.E. Baukal Jr, Oxygen-enhanced combustion, CRC press, USA, 1998.
[2] S.A. Skeen, Oxygen-enhanced combustion: theory and applications, Ph.D. Thesis, Washington University in St. Louis, 2009.
[3] Y. Tan, M.A. Douglas, K.V. Thambimuthu (2002), CO2 capture using oxygen enhanced combustion strategies for natural gas power plants, Fuel 81, 1007-1016.
[4] L. Wu, N. Kobayashi, Z. Li, H. Huang (2016), Experimental study on the effects of hydrogen addition on the emission and heat transfer characteristics of laminar methane diffusion flames with oxygen-enriched air, International Journal of Hydrogen Energy 41, 2023-2036.
[5] J. Oh, E. Lee, D. Noh (2015), Development of an oxygen-enhanced combustor for scrap preheating in an electric arc furnace, Applied Thermal Engineering 91, 749-758.
[6] K. Guo, W. Shi, Daohong Wu (2015), Experiment research and simulation analysis of regenerative oxygenenriched combustion technology, Energy Procedia 66, 221-224.
[7] G. Bisio, A. Bosio, G. Rubatto (2002), Thermodynamics applied to oxygen enrichment of combustion air, Energy Conversion and Management 43, 2589-2600.
[8] K. Wu, Y. Chang, C. Chen, Y. Chen (2010), High-efficiency combustion of natural gas with 21–30% oxygen-enriched air, Fuel 89, 2455-2462.
[9] N. Merlo, T. Boushaki, C. Chauveau, S.D. Persis, L. Pillier, B. Sarh, I.Gökalp (2014), Combustion characteristics of methane–oxygen enhanced air turbulent non-premixed swirling flames, Experimental Thermal and Fluid Science 56, 53-60.
[10] Y. Chang, K. Wu, Y. Chen, C. Chen (2015), Atomized air of oxygen-enriched combustion for a 450000 kcal/h industrial furnace, Energy Fuels 29, 3476-3482.
[11] P. Belohradský, P. Skryja, I. Hudák (2014), Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics, Energy 75, 116-126.
[12] L. Chen, S.Z. Yong, A.F. Ghoniem (2012), Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science 38, 156-214.
[13] V. Becher, S. Clausen, A. Fateev, H. Spliethoff (2011), Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments, International Journal of Greenhouse Gas Control 5S, S76-S99.
[14] V. Becher, J.P. Bohn, P. Dias, H. Spliethoff (2011), Validation of spectral gas radiation models under oxyfuel conditions—Part B: natural gas flame experiments, International Journal of Greenhouse Gas Control 5S, S66-S75.
[15] V. Becher, A. Goanta, H. Spliethoff (2012), Validation of spectral gas radiation models under oxyfuel conditions – Part C: validation of simplified models, International Journal of Greenhouse Gas Control 11, 34-51.
[16] V. Becher, J.P. Bohn, A. Goanta, H. Spliethoff (2011), A combustion concept for oxyfuel processes with low recirculation rate – experimental validation, Combustion and Flame 158, 1542-1552.
[17] C. Yin, L.A. Rosendahl, S.K. Kær (2011), Chemistry and radiation in oxy-fuel combustion: A computational fluid dynamics modeling study, Fuel 90, 2519-2529.
[18] M. Sánchez, F. Cadavid, A. Amell (2013), Experimental evaluation of a 20 kW oxygen enhanced self-regenerative burner operated in flameless combustion mode, Applied Energy 111, 240-246.
[19] Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, C. Zheng (2015), Effects of furnace chamber shape on the MILD combustion of natural gas, Applied Thermal Engineering 76, 64-75.
[20] F. Delacroix (2004), The flameless oxidation mode: an efficient combustion device leading also to very low NOx emission levels, producing more with less: Efficiency in Power Generation.
[21] N. Krishnamurthy, W. Blasiak, A. Lugnet, Development of high temperature air and oxy-fuel combustion technologies for minimized CO2 and NOx emissions in industrial heating, The Joint International Conference on “Sustainable Energy and Environment (SEE)”, Hua Hin, Thailand, Dec 1-3, 2004.
[22] J. Palm, Energy efficiency, Sciyo, Netherlands, 2010.
[23] W. Blasiak1, W.H. Yang, K. Narayanan1, J. von Scheele (2007), Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase, Journal of the Energy Institute 80, NO1.
[24] J. von Scheele, M. Gartz, R. Paul, M. T. Lantz (2008), Flameless oxyfuel combustion for increased production and reduced CO2 and NOx emissions, stahl und eisen 128, Nr.7.
[25] Z. Yuan, X. Yang, Z. Lu, J. Huang,Y. Pan, E. Ma (2007), Jet behavior and metallurgical performance of innovated double-parameter oxygen lance in BOF, Journal of Iron and Steel Resrarch 14, 01-05.
[26] J. Li, Y. Zeng, J. Wang, Z. Han (2011), Simulation of flow field of oxygen lance gas jet utilized for 50 t converter, Journal of Iron and Steel Resrarch 18, 11-18.
[27] J. Ren, Y. Fan, F.N. Egolfopoulos, T.T. Tsotsis (2003), Membrane-based reactive separations for power generation applications: oxygen lancing, Chemical Engineering Science 58, 1043-1052.
[28] Z. Zhao, H. Tang, Q. Quan, J. Zhang, S. Shi (2015), Simulation study on performance of novel oxygen-coal lances for pulverized coal combustion in blast furnace tuyere, Procedia Engineering 102, 1667-1676.
[29] K. Andersson, F. Johnsson (2007), Flame and radiation characteristics of gas-fired O2/CO2 combustion, Fuel 86, 656-668.
[30] A.H. Al-Abbas, J. Naser, D. Dodds (2011), CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 kW furnace, Fuel 90, 1778-1795.
[31] J. Zhang, B. Dai, Y. Meng, X. Wu, J. Zhang, X. Zhang,Y. Ninomiya, Z. Zhang, L. Zhang (2015), Pilot-scale experimental and CFD modeling investigations of oxy-fuel combustion of victorian brown coal, Fuel 144, 111-120.
[32] T. A. Ameel, Int. Comm. Heat mass transfer, 24, 112, 1997.
[33] I.L Roberts, J.E.R. Coney, B.M. Gibbs (2013), Estimation of radiation losses from sheathed thermocouples, Applied Thermal Engineering, 1-14.
[34] J.P. Reardon (2015), Computational modeling of radiation effects on total temperature probes, Blacksburg, VA.
[35] A.L. Brundage, S.P. Kearney, A.B. Donaldson, V.F. Nicolette, W. Gill, A joint computational and experimental study to evaluate inconel-sheathed thermocouple performance in flames, Sept. 2005. [PDF].
Available:http://www.osti.gov/scitech/biblio/923075-joint-computational-experimental-study-evaluate-inconel-sheathed-thermocouple-performance-flames, [Accessed: Dec. 14, 2016].
[36] E.F. Fiock, L.O. Olsen, P.D. Freeze (1948), The use of thermolcouples in streaming exhaust Gas, Symposium on Combustion- Flame and Explosion Phenomena 3, 655-662.
[37] R.A. Rossow (2005), Blackbody temperature calculations from visible and NEAR-IR spectra for gas-fired furnaces, Ph.D. Thesis, the faculty of the graduate school university of missouri-colimbia.
[38] C.K. Westbrook, P.L. Dryer (1981), Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combustion Science and Technology 27, 31-43.
[39] S.R. Turns, An introduction to combustion concepts and applications, Mc Grew Hill, 3ed, 2012.
[40] M.F. Modest, radiative heat transfer, Academic Press, 3ed, 2013.
[41] R. D. Chapman, Furnace waste gas sampling, U. S. Patent 6,148,678, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-01-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-01-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw