進階搜尋


下載電子全文  
系統識別號 U0026-2401201415163800
論文名稱(中文) 多樣本結構方程模型之調節效果檢定力分析
論文名稱(英文) Power Analysis of Moderation Effect with Multi-group Structural Equation Modeling
校院名稱 成功大學
系所名稱(中) 心理學系認知科學碩士班
系所名稱(英) MS in Cognitive Science
學年度 102
學期 1
出版年 103
研究生(中文) 林弋鈞
研究生(英文) Yi-Chun Lin
學號 U76001022
學位類別 碩士
語文別 中文
論文頁數 43頁
口試委員 口試委員-李俊霆
口試委員-顏志龍
指導教授-鄭中平
中文關鍵字 樣本數決定  檢定力分析  結構方程模型  調節效果 
英文關鍵字 sample size determination  power analysis  structural equation modeling  moderation effect 
學科別分類
中文摘要 多樣本結構方程模型可用來了解類別變項的調節效果,並利用卡方差異檢定來確認調節效果是否顯著存在。研究者宜在研究前進行檢定力分析,以避免有犯下型二錯誤的可能性而難以下結論。在單樣本的結構方程模型時,有兩種程序可以處理模型內參數的檢定力分析,第一個是蒙地卡羅程序,第二個是Satorra和Saris所提出的程序。
本研究延伸Satorra和Saris的程序至多樣本的結構方程模型,來處理調節效果的檢定力分析。本研究整理原程序與新程序之步驟並討論異同,再輔以一實例示範新程序的步驟,讓實務研究者能參照以利自行操作。
為了確認新程序的可行性,進行操弄六個變因共13500個情境的模擬研究,將新程序的結果與蒙地卡羅程序的結果比較。並且從模擬研究之結果探討影響檢定力大小的重要變因。結果發現新程序與蒙地卡羅之結果十分接近,表示新程序延伸至多樣本應屬可行。在六個變因中,總樣本數、樣本比例、各因素信度及調節效果量,佔了大部分的解釋量,與預期結果相符。因此,建議實務研究者在設計實驗時,應注意收集的樣本數、構念的測量品質、預期的效果量,以及各組樣本的比例。
英文摘要 Multi-group SEM is usually used for study moderation effect of categorical variables. However, only Monte Carlo approach of power analysis can be used with multi-group SEM. The study extended Satorra and Saris' approach of power analysis of moderation effect with multi-group SEM and demonstrate it by an example. Moreover, according to the result of simulation study, we conclude extended approach is reliable. Beside, the result show that sample size, effect size, reliability, and proportion are the major factors affecting the power of moderation effect.
論文目次 第一章 緒論 1
第一節 結構方程模型 1
第二節 卡方差異檢定 3
第三節 檢定力分析 4
第四節 蒙地卡羅檢定力分析程序 5
第五節 Satorra 和Saris取向之檢定力分析程序 6
第六節 現況 9
第二章 延伸Satorra和Saris 取向之檢定力分析程序 10
第一節 延伸程序至多樣本結構方程模型之調節效果檢定力分析 10
第二節 實例操作說明 12
第三節 實例操作步驟及結果 14
第四節 討論 17
第三章 模擬研究 18
第一節 模擬研究設計 18
第二節 兩種程序檢定力之結果比較 21
第三節 影響檢定力之變因 22
第四節 模擬研究之結論 28
第四章 結論及討論 29
參考文獻 34
附錄 36
參考文獻 Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246.
Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: a general analytical framework using moderated path analysis. Psychological Methods, 12(1), 1-22.
Fan, X. (2003). Power of latent growth modeling for detecting group differences in linear growth trajectory parameters. Structural Equation Modeling, 10(3), 380-400.
Gold, M. S., & Bentler, P. M. (2000). Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization. Structural Equation Modeling, 7(3), 319-355.
Hancock, G. R. (2006). Power analysis in covariance structure modeling. Hancock, G. R., & Mueller, R. O. (Eds. ) Structural equation modeling: A second course(pp. 69-115). Greenwich: IAP.
Hertzog, C., Lindenberger, U., Ghisletta, P., & Oertzen, T. V. (2006). On the power of multivariate latent growth curve models to detect correlated change. Psychological Methods, 11(3), 244-252.
Hu, L. T., & Bentler, P. M. (1998)Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.
Laroche, M., Cleveland, M., Bergeron, J., & Goutaland, C. (2003). The Knowledge‐Experience‐Evaluation Relationship: A Structural Equations Modeling Test of Gender Differences. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'administration, 20(3), 246-259.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
Meade, A. W., & Lautenschlager, G. J. (2004). A comparison of item response theory and confirmatory factor analytic methodologies for establishing measurement equivalence/invariance. Organizational Research Methods, 7(4), 361-388.
Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2(4), 371-472.
Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9(4), 599-620.
Penev, S., & Raykov, T. (2006). On the relationship between maximal reliability and maximal validity of linear composites. Multivariate Behavioral Research, 41(2), 105-126.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50(1), 83-90.
Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors. In annual meeting of the Psychometric Society, Iowa City, IA(Vol. 758 ), as cited in Hu, L. T., & Bentler, P. M. (1998)Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.
Steiger, J. H. (1989). Causal modeling." A supplementary module for SYSTAT and SYGRAPH. Evanston, IL: SYSTAT, as cited in Hu, L. T., & Bentler, P. M. (1998)Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-01-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-01-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw