進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2401201415144000
論文名稱(中文) 機會式雲端系統中考量安全與效能之資料傳輸技術研究
論文名稱(英文) Secure and Efficient Data Dissemination Techniques for Opportunistic Clouds
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 莊宜勳
研究生(英文) I-Hsun Chuang
學號 P78951082
學位類別 博士
語文別 英文
論文頁數 149頁
口試委員 指導教授-郭耀煌
口試委員-楊竹星
口試委員-鄭憲宗
口試委員-王協源
口試委員-李蔡彥
口試委員-李宗南
口試委員-廖宜恩
召集委員-廖弘源
口試委員-陳俊良
中文關鍵字 機會式雲端系統  機會網路  感知無線電網路  資料傳輸  網路安全評估 
英文關鍵字 Opportunistic Clouds  Opportunistic Networks  Cognitive Radio Networks  Data Dissemination  Network Security Evaluation 
學科別分類
中文摘要 機會式雲端系統是一種建構於機會網路的行動雲端系統。近年來,由於行動通訊裝置的發展與普及,行動雲端系統成為一種新興的網路服務模式。行動通訊裝置藉由彼此間的群聚與合作組成行動雲端以提供多元的網路服務。而利用使用者機會式的接觸,行動雲端系統將能形成機會網路以傳遞資料。一般而言,由於雲與雲之間通常缺乏連結,因此在機會式雲端系統中,資料的傳輸可分為雲內資料傳輸和雲間資料傳輸兩種模式。在雲內傳輸資料時,使用者採用傳統無線網路單跳躍或多跳躍的方式傳送資料。但由於使用者過於集中且快速移動,存取頻譜時容易發生衝突或中斷,進而影響傳輸頻寬。在此,採用動態頻譜存取的概念,感知無線電網路技術能有效利用授權頻譜以改善頻譜存取的問題。而在雲間傳送資料時,由於機會網路的特性,系統常常缺乏穩定的網路連結,因此儲存-攜帶-轉傳式(store-carry-forward)的繞送方法常用來傳輸資料。雖然此類方法能提供好的資料傳輸率,但其消耗的大量網路資源也是個可觀的負擔。在本論文中,考量了資料區域性及時效性的資料傳輸方法將被證實能更有效率的傳送資料。另一方面,在機會式雲端系統中,網路安全也是一個常被關注的焦點。在此,我們將提供使用者一條安全的傳輸路徑以達到保護資料傳輸的安全。一般而言,保護資料傳輸安全將消耗大量的資源,而由於使用者對於不同的服務有不同的安全需求,評估所需安全並提供適當的安全保護將有助於效能的提升。因此,本論文首先將量化安全演算法的防護能力。接著,找出適當的安全演算法組合以保護網路連結的安全並加以量化。利用網路連結的安全量化為指標,安全動態路由選擇演算法能提供使用者一條安全的資料傳輸路徑。最後,經由實驗的結果顯示,本論文所提之方法能在機會雲端系統上安全且有效率的傳輸資料。
英文摘要 Opportunistic Cloud is a kind of mobile cloud systems used in opportunistic networks. Recently, with the development and popularization of mobile devices, the mobile cloud becomes an emerging network service model. Mobile devices can form mobile clouds by assembling and cooperating with each other to provide various network services. Moreover, exploiting opportunistic contacts of users, mobile clouds can establish an opportunistic network to disseminate data. Generally, because opportunistic clouds are disconnected, data dissemination in this system can be divided into two types, intra-cloud data dissemination and inter-cloud data dissemination. When delivering data inside a cloud, traditional single-hop or multi-hop communication is usually adopted. However, since users might be concentrated and moving fast which will lead to conflict and interruption in spectrum access, the delivery bandwidth is always limited. In this dissertation, applying the concept of Dynamic Spectrum Access, the cognitive radio network technique can utilize the licensed spectrums efficiently to alleviate the spectrum access problem. When disseminating data between clouds, the store-carry-forward-based methods are usually used due to the lacks of stable connections in opportunistic networks. This kind of methods can achieve high data delivery rate but suffers from heavy burdens. In this dissertation, the methods which consider the information of data locality and data time-sensitiveness are demonstrated having better performance in data delivery. Furthermore, network security is another concerned issue in the opportunistic clouds. In this dissertation, we would like to provide users a secure routing path to achieve secure data dissemination. Generally, protecting network security costs a lot. Since different services might demand diverse security requirements, providing proper security protection according to the demanded security requirements is essential. To this end, this dissertation first evaluates the protection capability of security algorithms. Then, an appropriate set of security algorithms can be derived to protect network security of a link. After that, the security levels of all links will be derived. Referring to the security levels of links, the proposed secure dynamic routing protocol can derive a secure routing path for users. Finally, the simulation results show that the methods proposed in the dissertation can be used to securely and efficiently disseminate data in opportunistic clouds.
論文目次 List of Tables IX
List of Figures X
Chapter 1. Introduction 1
1.1. Motivation 2
1.2. Organization of this Dissertation 4
Chapter 2. Background 5
2.1. Background of Dynamic Spectrum Access 5
2.1.1. Survey of Blind Rendezvous Methods 7
2.2. Background of Inter-Cloud Data Dissemination 10
2.2.1. Dissemination-based Schemes 11
2.2.2. Context-based Schemes 11
2.2.3. Cooperative Caching Techniques 12
2.3. Background of Secure Routing 12
2.3.1. Protection Capability of Security Algorithms 14
2.3.2. Security Requirements 15
2.3.3. Threat Analysis 15
2.3.4. Secure Dynamic Routing 16
Chapter 3. Dynamic Spectrum Access Techniques 18
3.1. Alternate Hop-and-Wait Channel Hopping Method 18
3.1.1. System Model 18
3.1.2. Problem Formulation 18
3.1.3. Basic Concept 20
3.1.4. Method for Two-user Scenario under the Symmetric Model 21
3.1.5. Method for Two-user Scenario under the Asymmetric Model 35
3.1.6. Method for Multi-user/multi-hop Scenario 36
3.1.7. Comparison and Simulation 37
3.2. Fast Blind Rendezvous Method 41
3.2.1. System Model 41
3.2.2. Problem Formulation 41
3.2.3. Basic Concept 43
3.2.4. Channel Hopping Subsequence 45
3.2.5. Elementary Channel Hopping Sequence 45
3.2.6. ID Sequences of Secondary Users 46
3.2.7. Inner Alternate Channel Hopping Sequence 47
3.2.8. Alternate Channel Hopping Sequence 56
3.2.9. Performance Analysis 59
3.2.10. Simulation 64
Chapter 4. Inter-Cloud Data Dissemination Techniques 75
4.1. Community-based Data Dissemination Scheme 75
4.1.1. Basic Concept 75
4.1.2. System Model 76
4.1.3. Definitions and Assumptions 77
4.1.4. System Description 79
4.1.5. Simulation 82
4.2. Time-sensitive Data Dissemination Scheme 85
4.2.1. Basic Concept 85
4.2.2. System Description 86
4.2.3. Node Location Prediction (NLP) 87
4.2.4. Relay Node Selection (RNS) 88
4.2.5. Successor Selection (SS) 93
4.2.6. Simulation 94
Chapter 5. Secure Routing Techniques 99
5.1. Cross-Layer Design Network Security Evaluation 99
5.1.1. Security Dimensions 100
5.1.2. Cracking Year Metric 101
5.1.3. Cross-layer Design Network Security Management 101
5.1.4. Simulation 103
5.2. Secure Dynamic Routing Protocols 105
5.2.1. Threat-based Link Security Evaluation 106
5.2.2. Secure Dynamic Routing Protocol 113
5.2.3. Simulation 115
Chapter 6. Conclusion and Future Work 119
References……… 121
Appendix I 129
Appendix II 134
Appendix III 137
Appendix IV 138
Appendix V 143
Appendix VI 144
Glossary of Terms 145
Author’s Publications 148

參考文獻 [Aga05] A.K. Agarwal, Wenye Wang and Janise Y. McNair, “An Experimental Study of Cross-Layer Security Protocols in Public Access Wireless Networks,” IEEE Global Tele-communications Conference (GLOBECOM), 2005.
[Ahm08] M.S. Ahmed, E. Al-Shaer, L. Khan, “A Novel Quantitative Approach For Meas-uring Network Security,” IEEE INFOCOM, pp. 1957–1065, 2008.
[Aky08] I.F. Akyildiz, Lee Won-Yeol, M.C. Vuran, S. Mohanty, “A Survey on Spectrum Management in Cognitive Radio Networks,” IEEE Communication Magazine, vol. 46, no. 4, pp. 40–48, Apr. 2008.
[Alb01] C. Alberts, A. Dorofee, J.Stevens, C. Woody, "OCTAVE Method Implementation Guide", CERT Coordination Centre, Software Engineering Institute, Carnegie Mellon In-stitute, 2001-2003, http://www.cert.org/octave/.
[Bia09] K. Bian, J.-M. Park, and R. Chen, “A Quorum-based Frame-work for Establishing Control Channels in Dynamic Spectrum Access Networks,” Proc. of ACM MobiCom, 2009.
[Bia11a] K. Bian, J.-M Park, “Asynchronous Channel Hopping for Establishing Rendez-vous in Cognitive Radio Networks,” Proc. of IEEE INFOCOM, 2011.
[Bia11b] K. Bian, J-M.Park, and R.Chen, “Control channel establishment in cognitive radio networks using channel hopping,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 4, pp. 689-703, Apr. 2011.
[Bia12] K. Bian and J.-M. Park, “Maximizing Rendezvous Diversity in Rendezvous Proto-cols for Decentralized Cognitive Radio Networks,” IEEE Transactions on Mobile Compu-ting, Vol. 12(7):1294-1307, Jul. 2012.
[Bol07] C. Boldrini, M. Conti, J. Jacopini, and A. Passarella, “HiBOp: a History Based Routing Protocol for Opportunistic Networks,” IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2007.
[Bre99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker, “Web Caching and Zipf-like Distributions: Evidence and Implications,” IEEE INFOCOM, 1999.
[Cha13] C.M. Chao and H.Y. Fu, “Providing Complete Rendezvous Guarantee for Cogni-tive Radio Networks by Quorum Systems and Latin Squares,” Proc. of IEEE WCNC, 2013.
[Che10] P.C. Cheng, K.C. Lee, M. Gerla, and J. Harri, "GeoDTN+Nav: Geographic DTN Routing with Navigator Prediction for Urban Vehicular Environments," Mobile Networks and Applications, 2010.
[Chi08] B. Chiara, C. Marco, and P. Andrea, “ContentPlace: social-aware data dissemina-tion in opportunistic networks,” Proc. of ACM MSWiM, 2008.
[Chi09] K. Chin-Fu, P. Ai-Chun, C. Sheng-Kun, “Dynamic Routing with Security Consid-erations,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1, pp. 48-58, 2009.
[Cho11] Y. Chon and H. Cha, "Lifemap: A smartphone-based context provider for location-based services," IEEE Pervasive Computing, 2011.
[Cor05] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: The First Worldwide Wireless Standard Based on Cognitive Radios,” IEEE DySPAN, 2005.
[Cor06] C. Cordeiro, Kiran Challapali, and Dagnachew Birru “IEEE 802.22: An Introduc-tion to the First Wireless Standard based on Cognitive Radios,” Journal of Communica-tions, vol. 1, no. 1, 2006.
[Cry07] Crypto++ Library 5.5.2. http://www.cryptopp.com, 2007.
[Dan04] P. Dan, Z. Lixia, D. Massey, “A Framework for Resilient Internet Routing Proto-cols,” IEEE Network Magazine, vol. 18, no. 2, pp.5 -12, 2004.
[Das08] L. DaSilva and I. Guerreiro, “Sequence-based Rendezvous for Dynamic Spectrum Access,” Proc. of IEEE DySPAN, 2008.
[Eag06] N. Eagle and A. Pentland, "Reality mining: sensing complex social systems," Per-sonal and Ubiquitous Computing, vol. 10, no. 4, pp. 255-268, May, 2006.
[ETS03] ETSI. "Telecommunications and internet protocol harmonization over networks (TIPHON) release 4; protocol framework definition; methods and protocols for security; part 1: Threat analysis", Technical Specification ETSI TS 102 165-1 V4.61.v1, 2003.
[Fan13] J. Fan, J. Chen, Y. Du, W. Gao, J. Wu, and Y. Sun, “Geo-Community-Based Broadcasting for Data Dissemination in Mobile Social Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 4, pp. 734–743, 2013.
[FCC02] Federal Communications Commission, “Spectrum Policy Task Force Report,” ET Docket no. 02-155, Nov. 02, 2002.
[Gao10] W. Gao, and G. Cao, “On Exploiting Transient Contact Patterns for Data Forwarding in Delay Tolerant Networks,” IEEE International Conference on Network Protocols, 2010.
[Gha08] A. Ghasemi and E.S. Sousa, “Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Design Trade-offs,” IEEE Communications Magazine, 2008.
[Gu13] Z. Gu, Q.S. Hua, Y. Wang, and F.C.M. Lau, “Nearly Optimal Asynchronous Blind Rendezvous Algorithm for Cognitive Radio Networks,” Proc. of IEEE SECON, 2013.
[Hou11] F.Hou, L.X.Cai, X.Shen, and J. Huang, “Asynchronous multichannel mac design with difference-set-based hopping sequences,” IEEE Transactions on Vehicular Technology, vol. 7, pp. 4502 -4507, 2011.
[Hua08] C.M. Huang, K.C. Lan, and C.Z. Tsai, “A Survey of Opportunistic Networks,” International Conference on Advanced Information Networking and Applications, 2008.
[Hua11] W. Huang, S. Zhang, and W. Zhou, “Spray and Wait Routing Based on Position Prediction in Opportunistic Networks,” International Conference on Computer Research and Development, 2011.
[Hue10] G. Huerta-Canepa and D. Lee, "A virtual cloud computing provider for mobile de-vices," Proc. of ACM Workshop on Mobile Cloud Computing & Services, 2010.
[Int91] The International Telegraph and Telephone Consultative Committee, “Security Ar-chitecture for Open Systems Interconnection for CCITT Applications Recommendation X.800”, 1991.
[ITU03] Draft ITU-T Recommendation X.805 (Formerly X.css), Security architecture for systems providing end-to-end communications.
[Jia08] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A Hardware-constrained Cognitive MAC for Efficient Spectrum Management,” IEEE Journal on Selected Areas in Communi-cations, vol. 26, no. 1, pp.106 -117, 2008.
[Jia09] N. Jianwei, Z. Xing, W. Kongqiao, and Ma. Jian, “A Data Transmission Scheme for Community-Based Opportunistic Networks,” International Conference on Wireless Com-munications, Networking and Mobile Computing, 2009.
[Jon10] S. Jongmin, Y. Dongmin, K. Cheeha, “A Channel Rendezvous Scheme for Cogni-tive Radio Networks,” IEEE Communication Letters, vol. 14, no. 10, pp. 954-956, Oct. 2010.
[Kae13] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossaina, "A Framework for Coopera-tive Resource Management in Mobile Cloud Computing," IEEE Journal on Selected Areas in Communications, vol. 31, 2013.
[Kan10] S.M. Kannappa, and M. Saquib, “Performance Analysis of a Cognitive Network with Dynamic Spectrum Assignment to Secondary Users,” Proc. of IEEE ICC, 2010.
[Kel04] H. Kellerer, U. Pferschy, and D. Pisinger, "Knapsack Problems," Springer, 2004.
[Len99] A. K. Lenstra and Eric R. Verheul, “Selecting Cryptographic Key Sizes,” Journal of Cryptology, 1999.
[Len07] V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc Podcasting,” IEEE Communications Society Conference on SECON, 07.
[Lin03] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in Intermittently Connected Networks,” ACM SIGMOBILE Mobile Computing and Communications Re-view, 2003.
[Lin11] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-Stay Based Channel-hopping Al-gorithm with Guaranteed Rendezvous for Cognitive Radio Networks,” IEEE INFOCOM, 2011.
[Lin13] Z. Lin, H. Liu, X. Chu, Y. Leung, "Enhanced Jump-Stay Rendezvous Algorithm for Cognitive Radio Networks," IEEE Communications Letters, vol. 17, no. 9, pp. 1742–1745, 2013.
[Liu10] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Ring-Walk Based Channel- Hopping Algorithms with Guaranteed Rendezvous for Cognitive Radio Networks,” IEEE/ACM GreenCom, 2010 & CPSCom, 2010.
[Liu12] H. Liu, Z. Lin, X. Chu, Y. Leung, “Jump-Stay Rendezvous Algorithm for Cogni-tive Radio Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 10, pp. 1867–1881, 2012.
[Liu13] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, "Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications," IEEE Wireless Communication Magazine, vol. 20, pp. 14–22, Jun. 2013.
[Ma05] L. Ma, X. Han, and C.-C. Shen, “Dynamic Open Spectrum Sharing for Wireless Ad Hoc Networks,” Proc. of IEEE DySPAN, 2005.
[Mar80] S. Martello and P. Toth, ”Heuristic Algorithms for the Multiple Knapsack Prob-lem,” Springlink, 1980.
[Nel09] S.C. Nelson, M.Bakht, and R. Kravets, “Encounter–Based Routing in DTNs,” IEEE International Conference on Computer Communications, 2009.
[Nic06] P. Nicopolitidis, G.I. Papadimitriou, and A.S. Pomportsis, “Exploiting locality of demand to improve the performance of wireless data Broadcasting,” IEEE Transactions on Vehicular Technology, vol. 55, no. 4, pp. 1347–1361, 2006.
[Pel06] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data forwarding in disconnected mobile ad hoc networks,” IEEE Communications Magazine, vol. 44, no.11, pp.134-141, Nov. 2006.
[Pet06] M. Peter, S. Karen, and R. Sasha, “Common Vulnerability Scoring System,” IEEE Security and Privacy Magazine, vol.4, pp. 85-89, 2006.
[Pet07] M. Peter, S. Karen, “Improving the Common Vulnerability Scoring System,” IET Information Security, vol. 1, pp. 119 -127, Sep. 2007.
[Pet11] S. Petajasoja, H. Kortti, A. Takanen, and J. Tirila, “IMS Threat and Attack Surface Analysis Using Common Vulnerability Scoring System,” IEEE 35th Annual Computer Software and Applications Conference Workshops (COMPSACW), 2011.
[Rom11] S. Romaszko, P. Mahonen, “Grid-based channel mapping in cognitive radio ad hoc networks,” Proc. of IEEE PIMRC, 2011.
[Rom12] S. Romaszko, P. Mahonen, "Heterogeneous torus quorum-based rendezvous in Cognitive Radio Ad Hoc Networks," Proc. of IEEE WiMob, 2012.
[Rom13] S. Romaszko, "A Rendezvous Protocol with the Heterogeneous Spectrum Availa-bility Analysis for Cognitive Radio Ad Hoc Networks," Journal of Electrical and Computer Engineering, 2013.
[Sah05] M. Sahinoglu, “Security meter: a practical decision-tree model to quantify Risk,” IEEE Security and Privacy Magazine, vol. 3, no. 3, pp. 18–24, 2005.
[Sam07] A. Sampath, D. Hui, Z. Haitao, B.Y. Zhao, “Multi-channel Jamming Attacks using Cognitive Radios,” Proc. of ICCCN, 2007.
[Shi10] J. Shin, D. Yang, and C. Kim, ”A Channel Rendezvous Scheme for Cognitive Ra-dio Networks,” IEEE Communications Letters, vol. 14, no. 10, pp. 954-956, Oct. 2010.
[Spy05] T. Spyropoulos, K. Psounis, and C.S. Raghavendra, “Spray and Wait: An Effcient Routing Scheme for Intermittently Connected Mobile Networks,” Proc. of the ACM SIGCOMM workshop on Delay-tolerant networking, 2005.
[Sri05] Vineet Srivastava and Mehul Motani, “Cross-Layer Design: A Survey and the Road Ahead,” IEEE Communications Magazine, vol. 43, no. 12, pp.112 -119, 2005.
[Ste09] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, W. Caldwell, “IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard,” IEEE Communications Magazine, vol.47, no.1, pp.130-138, Jan. 2009.
[Tag09] P. Tague, D. Slater, J. Rogers, and R. Poovendran, “Evaluating the Vulnerability of Network Traffic Using Joint Security and Routing Analysis,” IEEE Transactions on De-pendable and Secure Computing, vol. 6, no. 2, pp. 111-123, 2009.
[The10] N. C. Theis, R. W. Thomas and L. A. DaSilva, “Rendezvous for Cognitive Radi-os,” IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 216-227, Feb. 2010.
[Tin07] Yi-Wei Ting, and Yeim-Kuan Chang, “A Novel Cooperative Caching Scheme for Wireless Ad Hoc Networks: GroupCaching,” IEEE International Conference on Network-ing, Architecture, and Storage, 2007.
[Vah00] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected Ad Hoc Networks,” Tech. Rep. CS-2000-06, Department of Computer Science, Duke University, Durham, NC, 2000.
[Yan10] D. Yang, J. Shin, and C. Kim, “Deterministic Rendezvous Scheme in Multichannel Access Networks,” Electronics Letters, vol. 46, no. 20, pp. 1402-1404, 2010.
[Yon07] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware overlay for pub-lish/subscribe communication in delay tolerant networks,” Proc. of ACM MSWiM, 2007.
[Zha07] Q. Zhao and B. M. Sadler, "A survey of dynamic spectrum access," IEEE Signal Processing Magazine, vol. 4, no. 3, pp.79 -89, 2007.
[Zha11] Y. Zhang, Q. Li, G. Yu, B. Wang, “ETCH: Efficient Channel Hopping for Commu-nication Rendezvous in Dynamic Spectrum Access Networks,” Proc. of IEEE INFOCOM, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw