進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2401201412375300
論文名稱(中文) 泰國東安康山PM2.5中水溶性離子化學特性分析
論文名稱(英文) Chemical Characterization of Water Soluble Ions in PM2.5 at Doi Ang Khang, Thailand
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 102
學期 1
出版年 103
研究生(中文) 藍欣辛
研究生(英文) Lila Panggabean
學號 S76017039
學位類別 碩士
語文別 英文
論文頁數 85頁
口試委員 口試委員-林能暉
口試委員- 蘇慧貞
指導教授-林明彥
中文關鍵字 水溶性離子  生質燃燒  PM2.5 
英文關鍵字 water-soluble ions  biomass burning  PM2.5 
學科別分類
中文摘要 近年來PM2.5因為對人類健康和環境的危害,受到大家的關注。PM2.5的主要來源為生質燃燒(biomass burning),於七海計畫(Seven Southeast Asia Study,7-SEAS)團隊中,我們將蒸氣噴射氣膠凝集器(Steam Jet Aerosol Collector, SJAC)搭配離子層析儀(Ion Chromatography, IC)組成即時量測系統(時間解析度為30分鐘),針對PM2.5中水性離子之特質做深入探討,分析物質包含陽離子(Li+、NH4+、K+、Mg2+、Na+、Ca2+)以及陰離子(Cl-、Br-、NO2-、NO3-、SO42-),本次研究地點於泰國清邁安康山(東經99.05度 , 北緯19.93度, 海拔1536公尺),研究時間為當地生質燃燒旺盛時期(2013/3/10 -2013/4/9)。
本研究數據顯示,PM2.5中水溶性離子主要成分為NH4+、NO3-和SO42-,占所有水溶性離子的80.7%。各物質NH4+、 K+、Mg2+、Na+、Ca2+、Cl-、NO3-、SO42- 之平均濃度分別為2.2 µg/m3、 0.7 µg/m3、 0.1 µg/m3、 0.1 µg/m3、 0.7 µg/m3、 1.5 µg/m3、3.3 µg/m3、3.7 µg/m3。計算 Neutralization degree (F)後可以發現PM2.5之樣品普遍呈現酸性,有43%之PM2.5樣品呈現弱酸性(F<0.9),18.3%之比例呈現強酸性(F<0.75)。此外,PM2.5與水溶性離子(NH4+、NO3-)濃度對時間的序列圖上呈現相同趨勢。我們亦同時比較 SJAC 以及 Filter-based method 所量測出來的數據,發現兩方法在量測NO3-濃度結果相關性不高, 但是在量測NH4+ 和 SO42-濃度結果有高度相關性。風向分析顯示PM2.5的濃度與水溶性離子多寡呈正相關。
最後我們使用模式(ISORROPIA II)模擬下列物質濃度NH4+ (R2 = 0.99) 、NO3- (R2 = 0.89)以及 Cl (R2 = 0.95),比較而言p-value < 10-18,模式模擬結果顯示各個物質濃度其預測值與實際值有著非常好的相關性。
本研究的結果顯示使用即時量測系統能使我們更容易地了解氣膠,尤其是在生質燃燒時,氣膠傳播及氣象參數的交互作用方面。
英文摘要 PM2.5 has gained significant attention recently due to its impact on both human health and climate. A major source of ambient PM2.5 is biomass burning. During 7SEAS (Seven Southeast Asia Studies) Campaign in 2013, we characterized water-soluble ions in PM2.5 through real time measurements (time resolution = 30 minutes) by combining steam jet aerosol collector (SJAC) with ion chromatography during biomass burning period (10 March 2013 – 9 April 2013) at Doi Ang Khang Meteorological Station, Chiang Mai Province, Thailand (99.05°E, 19.93°N, and altitude of 1536 m above the sea level). Both cations (Li+, NH4+, K+, Mg2+, Na+ and Ca2+) and anions (Cl-, Br-, NO2-, NO3-, and SO42-) species were analyzed.
From the processed data, NH4+, NO3-, and SO42- are the major water soluble ions and contributed to around 80.7% of the total water soluble ions. The mean concentration of NH4+, K+, Mg2+, Na+, Ca2+, Cl-, NO3-, and SO42- was 2.2 µg/m3, 0.7 µg/m3, 0.1 µg/m3, 0.1 µg/m3, 0.55 µg/m3, 1.5 µg/m3, 3.3 µg/m3, and 3.7 µg/m3, respectively. We further calculated the neutralization degree (F) and found 43.0% of PM2.5 samples were acidic (F<0.9) while 18.3% were strong acidic (F<0.75). The time series plot of PM2.5 and water soluble ions (NH4+, and NO3-) showed similar patterns. Comparison between SJAC and filter-based method measurement of dominant ions during online measurement showed weak correlation of NO3-, while NH4+ and SO42- showed higher correlation. Wind rose analysis showed the dependency of PM2.5 and dominant water soluble ions (NH4+, NO3-, and SO42-). Model simulation using ISORROPIA II showed high correlation between real time and predicted concentrations of NH4+ (R2 = 0.99), NO3- (R2 = 0.89) and Cl (R2 = 0.95) with p-value < 10-18.
The results of this study was performed based on real-time measurement in an attempt to gain a better understanding of aerosols, especially during biomass burning events, their transport and interaction with meteorological parameters.
論文目次 Abstract …………………………………………………………………………... ii
摘要……………………………………………………………………………….. iv
Acknowlegment ………………………………………………………………….. vi
Content ………………………………………………………………..………….. vii
Lists of Tables ……………………………………………………………………. ix
List of Figures …………………………………………………………………….. x
1 Introduction ……………………………………………………………................. 1
1.1. Atmospheric aerosols …………………………………………………… 1
1.2. PM2.5 and health effects………………………………………………… 2
1.3. Biomass Burning ……………………………………………………….. 4
1.4. Chemical Composition of Biomass Burning Emission …………………. 5
1.5. South East Asian Studies (7 SEAS) …………………………………….. 7
2 Objective …………………………………………………………………………. 9
3 Materials and Method………………………………………….............................. 10
3.1. Sampling site and meteorological data …………………..……………… 10
3.2. Instrumentation and meteorological data ……………………………….. 13
3.3. Quality control ………………………………………………………….. 16
3.4. Backward trajectory analysis and fire map ……………………………... 16
3.5. ISORROPIA II model simulation ………………………………………. 16
4 Results and Discussion ………………………………………………..………….. 18
4.1. Meteorological condition and biomass burning activities during sampling period ………..………………………………………………...
18
4.2. Statistical summary of PM2.5 and water soluble ions ………………..... 22
4.3. Possible sources of water soluble ions in PM2.5 …………………......... 28
4.4. PM2.5 acidity analysis ………………………………………………….. 30
4.5. Comparison of real time and filter-based method ………………………. 33
4.5.1. Comparison of real time and filter-based method during online measurement ……………………………………………………. 34

4.5.2. Comparison of real time and filter-based method during offline measurement ……………………………………………………... 42
4.6. Diurnal pattern analysis ………………………………………………… 51
4.7. Wind rose analysis and NOAA backward trajectory plot ……………… 55
4.8. ISORROPIA II Model simulation ……………………………………… 60
5 Conclusion …………………………………………………………….………...... 70
6 References ………………………………………………………………………... 72
參考文獻 Abas MR, Simoneit BRT. 1996. Composition of extractable organic matter of air particles from Malaysiainitial study. Atmospheric Environment 30: 2779 – 2793.
Adams PJ, Seinfeld JH, Koch DM. 1999. Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, Journal of Geophysical Research: Atmospheres 13: 791 – 823.
Al-Momani IF, Ataman OY, Anwari AM, Tuncel S, Köse C, Tuncel G. 1995. Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmospheric Environment 29: 1131–1143.
Andreae MO. 1995. Climatic effects of changing atmospheric aerosol levels, in World Survey of Climatology, Future Climates of the World. Elsevier. New York. 16: 341– 392.
Andreae MO, Artaxo P, Brandao C, Carswell FE, Ciccioli P, da Costa AL, Culf AD, Esteves JL, Gash JHC, Grace J, Kabat P, Lelieveld J, Malhi Y, Manzi AO, Meixner FX, Nobre AD, Nobre C, Ruivo M, Silva-Dias MA, Stefani P, Valentini R, von Jouanne J, Waterloo MJ. 2002. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBAEUSTACH experiments. Journal of Geophysical Research 107: 1 – 25.
Andreae MO, Atlas E, Harris GW, Helas G, de Kock A, Koppmann R, Maenhaut W, Manø S, Pollock WH, Rudolph J, Scharffe D, Schebeske G, Welling M. 1996. Methyl halide emissions from savanna fires in southern Africa. Journal of Geophysical Research: Atmospheres 101: 23603 – 23613.
Appel BR., Wall SM, Tokiwa Y, Haik M, 1979. Interference effects in sampling particulate nitrate in ambient air. Atmospheric Environment 13: 319 – 325.
Asman WAH., Sutton MA, Schjorring JK. 1998. Ammonia: emission, atmospheric transport and deposition. New Phytologist. 139(1): 27 – 48.
Ayers GP. 2001. Comment on regression analysis of air quality data. Atmospheric Environment 35(13): 2423 – 2425.
Barnett AG, Williams GM, Schwartz J, Best TL, Neller AH, Petroeschevsky AL, Simpson RW. 2006. The Effects of Air Pollution on Hospitalizations for Cardiovascular Disease in Elderly People in Australian and New Zealand Cities. Environmental Health Perspectives 114: 1018 – 1023.
Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van Der Hoek KW, Olivier JGJ. 1997. A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles 11(4): 561 – 587.
Buijsman E, Mass HFM, Asman WAH. 1987. Anthropogenic ammonium emission in Europe. Atmospheric Enuironment 21, 1009 – 1022.
Cao G, Jang M. 2010. An SOA model for toluene oxidation in the presence of inorganic aerosols. Environmental Science & Technology 44: 727 – 733.
Chang D, Song Y. 2010. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmospheric Chemistry and Physics 10: 2335 – 2351.
Chantara S, Sillapapiromsuk S, Wiriya W. 2012. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005–2009), their possible sources and relation to air mass movement. Atmospheric Environment 60: 88 – 98.
Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA Jr, Hansen JE, Hofmann DJ. 1992. Climate forcing by anthropogenic aerosols. Science 255(5043): 423 – 430.
Cheng Y, Engling G, He KB, Duan FK, Ma YL, Du ZY, Liu JM, Zheng M, Weber RJ. 2013. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics 13(15): 7765 – 7781.
Crawley J, Sievering H. 1986. Factor analysis of the MAP3S/RAINE precipitation chemistry network: 19761980. Atmospheric Environment 20, 1001 – 1013.
Crutzen PJ, Andreae MO. 1990. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 250: 1669 – 1678.
Crutzen PJ, Heidt LE, Krasnec JP, Pollock WH, Seiler W. 1979. Biomass burning as a source of atmospheric gases C O, H2, N20, NO, CH3Cl, and COS. Nature 282: 253 – 256.
Dawson JP, Adams PJ, Pandis SN. 2007. Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmospheric Chemistry and Physics 7: 4295 – 4309.
Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W. 2013. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro 27(6): 1762 – 1770.
Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE. 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329(24):1753 – 1759.
Dockery DW, Pope CA III. 1994. Acute Respiratory Effects of Particulate Air Pollution. Annual Review of Public Health 15: 107 – 132.
Draxler RR. 2007. Demonstration of a global modeling methodology to determine the relative importance of local and long-distance sources. Atmospheric Environment 41(4): 776 – 789.
Eagan RC, Hobbs PV, Radke LF. 1974. Measurements of cloud condensation nuclei and cloud droplet size distributions the vicinity of forest fires. Journal of Applied Meteorology and Climatology 13: 553 – 557.
Falkovich AH, Graber ER, Schkolnik G, Rudich Y, Maenhaut W, Artaxo P. 2005. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics 5: 781 – 797.
Fang M, Zheng M, Wang M, To KL, Jaafar AB, Tong SL. 1999. The solvent-extractable organic compounds in the Indonesian biomass burning aerosols — characterization studies. Atmospheric Environment 33: 783 – 795.
Finlayson-Pitts BJ, Pitts Jr JN. 2000. Chemistry of the upper and lower atmosphere : theory, experiments, and applications. Academic Press. San Diego.
Frank, NH. 2006. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. Journal of the Air & Waste Management Association 56: 500 – 511
Franklin M, Koutrakis P, Schwartz J. 2008. The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19: 680 – 689.
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ. 2004. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 70(2): 153 – 226.
Gao X, Yang L, Cheng S, Gao R, Zhou Y, Xue L, Shou Y, Wang J, Wang X, Nie W, Xu P, Wang W. 2011. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments. Atmospheric Environment 45: 6048 – 6056.
Giglio L, Descloitres J, Justice CO, Kaufman YJ. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87(2–3): 273 – 282.
Graf HF, Nober FJ, Rosenfeld D. 2001. Sensitivity of Global Climate to the Detrimental Impact of Smoke on Rain Clouds (Report No. 316). Max Planck Institute for Meteorology. Hamburg.
Griffin RJ. 2013. The Sources and Impacts of Tropospheric Particulate Matter. Nature Education Knowledge 4(5): 1.
Hatch CD, Grassian VH. 2008. 10th Anniversary review: applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth’s atmosphere. Journal of Environmental Monitoring 10: 919 – 934.
Henning S, Weingartner E, Schwikowski M, Gäggeler HW, Gehrig R, Hinz KP, Trimborn A, Spengler B, Baltensperger U. 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl) Journal of Geophysical Research: Atmospheres 108: 1 – 10.
Hinds WC. 1999. Aerosol Technology. Wiley. New York.
Hobbs PV, Radke LF. 1969. Cloud condensation nuclei from a simulated forest fire. Science, 163: 279.
Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. 2001.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. Cambridge University Press. Cambridge.
Hu GP, Balasubramanian R, Wu CD. 2003. Chemical characterization of rainwater at Singapore. Chemosphere 51(8): 747 – 755.
Huang K, Fu JS, Hsu NC, Gao Y, Dong X, Tsay SC, Lam YF. 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmospheric Environment 78: 291 – 302.
Hung LJ, Chan TF, Wu CH, Chiu HF, Yang CF. 2012. Traffic air pollution and risk of death from ovarian cancer in Taiwan: Fine particulate matter (PM2.5) as a proxy marker. Journal of Toxicology and Environmental Health Part A 75: 174 – 182.
Hung LJ, Tsai SS, Chen PS, Yang YH, Liou SH, Wu TN, Yang CY. 2012. Traffic air pollution and risk of death from breast cancer in Taiwan: Fine particulate matter (PM2.5) as a proxy marker. Aerosol and Air Quality Research. 12: 275 – 282.
Janssen NA, Fischer P, Marra M, Ameling C, Cassee FR. 2013. Short-term effects of PM2.5, PM10 and PM2.5-10 on daily mortality in The Netherlands. Science of The Total Environment 463 – 464: 20 – 26.
Karlsson PE, Ferm M, Tømmervik H, Hole LR, Karlsson GP, Ruoho-Airola T, Aas W, Hellsten S, Akselsson C, Mikkelsen TN, Nihlgård B. 2013. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia. Environmental Pollution 176: 71 – 79.
Karydis VA, Tsimpidi AP, Fountoukis C, Nenes A, Zavala M, Lei W, Molina LT, Pandis SN. 2010. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity. Atmospheric Environment 44: 608 – 620.
Khezri B, Mo H, Yan Z, Chong SL, Heng AK, Webster RD. 2013. Simultaneous online monitoring of inorganic compounds in aerosols and gases in an industrialized area. Atmospheric Environment 80: 352 – 360.
Khlystov A, Lin M, Bolch AM, Ma Y. 2009. Investigation of positive artifact formation during sampling semi-volatile aerosol using wet-walled denuders. Atmospheric Environment 43: 364 – 370.
Khlystov A, Wyers GP, Slanina J. 1995. The steam-jet aerosol collector. Atmospheric Environment 29(17): 2229 – 2234.
Krupa SV. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124(2): 179 – 221.
Lee CT, Chuang MT, Lin NH, Wang JL, Sheu GR, Chang SC, Wang SH, Huang H, Chen HW, Liu YL, Weng GH, Lai HY, Hsu SP. 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45: 5784 – 5794.
Lee DS, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF. 1997. Estimations of global no, emissions and their uncertainties. Atmospheric Environment 31(12): 1735 – 1749.
Lee YN, Weber R, Ma Y, Orsini D, Maxwell-Meier K, Blake D, Meinardi S, Sachse G, Harward C, Chen TY, Thornton D, Tu, FH, Bandy A. 2003. Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. Journal of Geophysical Research: Atmospheres 108.
Leiva G MA, Santibañez DA, Ibarra E S, Matus C P, Seguel R. 2013. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution 181: 1 – 6.
Levine JS. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press. Cambridge.
Lichtenfels AJ, Gomes JB, Pieri PC, El Khouri Miraglia SG, Hallak J, Saldiva PH. 2007. Increased Levels of Air Pollution and a Decrease in the Human and Mouse Male-to-female Ratio in Sao Paulo, Brazil. Fertility and Sterility 87: 230 – 232.
Lin NH, Tsay SC, Maring HB, Yen MC, Sheu GR, Wang SH, Chi KH, Chuang MT, Ou-Yang CF, Fu JS, Reid JS, Lee CT, Wang LC, Wang JL, Hsu CN, Sayer AM, Holben BN, Chu YC, Nguyen XA, Sopajaree K, Chen SJ, Cheng MT, Tsuang BJ, Tsai CJ, Peng CM, Schnell RC, Conway T, Chang CT, Lin KS, Tsai YI, Lee WJ, Chang SC, Liu JJ, Chiang WL, Huang SJ, Lin TH, Liu GR. 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78: 1 – 19.
Maisonet M, Correa A, Misra D, Jaakkola JJ. 2004. A Review of the Literature on the Effects of Ambient Air Pollution on Fetal Growth. Environmental Research 95: 106 – 115.
Manktelow PT, Carslaw KS, Mann GW, Spracklen DW. 2010. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmospheric Chemistry and Physics 10: 365 – 382.
Nazariah SS, Juliana J, Abdah MA. 2013. Interleukin-6 via sputum induction as biomarker of inflammation for indoor particulate matter among primary school children in Klang Valley, Malaysia. Global Journal of Health Science 5 (4): 93 – 105.
Nel A. 2005. Air pollution-related illness: effects of particles. Science, 308: 804 – 806.
Ostro B, Feng WY, Broadwin R, Green S, Lipsett M. 2007. The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental Health Perspectives 115: 13 – 19.
Pandis SN, Seinfeld JH. 1989. Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. Journal of Geophysical Research: Atmospheres, 94: 1105 – 1126.
Pathak RK, Chan CK. 2005. Inter-particle and gas-particle interactions in sampling artifacts of PM2.5 in filter-based samplers. Atmospheric Environment, 39(9): 1597 – 1607.
Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F. 2009. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environmental Health Perspectives 117: 957 – 963.
Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, Gelencsér A. 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42(32): 7530 – 7543.
Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. 2002. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. Journal of the American Medical Association 287: 1132 – 1141.
Pope CA III, Ezzati M, Dockery DW. 2009. Fine particulate Air Pollution and Life Expectancy in the United States. New England Journal of Medicine 360: 376 – 386.
Pope CA III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW Jr.. Heath, Jr. 1995. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. American Journal of Respiratory and Critical Care Medicine 151(3 Pt 1): 669 –674.
Pöschl U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44: 7520 – 7540.
Ram K, Sarin MM. 2011. Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45: 460 – 468.
Rice MB, Ljungman PL, Wilker EH, Gold DR, Schwartz JD, Koutrakis P, Washko GR, O'Connor GT, Mittleman MA. 2013. Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study. American Journal of Respiratory and Critical Care Medicine 188(11): 1351 – 1357.
Roberts MC, Andreae MO, Zhou JC, Artaxo P. 2001. Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophysical Research Letters 28: 2807 – 2810.
Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophysical Research Letters 26: 3105 – 3108.
Saldiva PH, Pope CA 3rd, Schwartz J, Dockery DW, Lichtenfels AJ, Salge JM, Barone I, Bohm GM. 1995. Air Pollution and Mortality in Elderly People: A Time-series Study in Sao Paulo, Brazil. Archives of Environmental Health 50: 159 – 163.
Schaap M, Spindler G, Schulz M, Acker K, Maenhaut W, Berner A, Wieprecht W, Streit N, Muller K, Bruggemann E, Chi X, Putaud JP, Hitzenberger R, Puxbaum H, Baltensperger U, and ten Brink HM. 2004. Artefacts in the sampling of nitrate studied in the “INTERCOMP” campaigns of EUROTRAC-AEROSOL. Atmospheric Environment 38: 6487 – 6496.
Seiler W, Crutzen PJ. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2: 207 – 247.
Seinfeld JH, Pandis SN. 1998. Atmospheric Chemistry and Physics. John Wiley. New York.
Seinfeld JH, Pandis SN. 2006. Atmospheric Chemistry and Physics, Second edition. John Wiley & Sons. New Jersey.
Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL. 2013. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382(9897): 1039 – 1048.
Shon ZH, Kim KH, Song SK, Jung K, Kim NJ, Lee JB. 2012. Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric Environment, 59: 540 – 550.
Simoneit BRT. 2002. Biomass burning — a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17 (3): 129 – 162.
Smith RJ. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140(3): 476 – 486.
Sprent P. 1966. A generalized least squares approach to linear functional relationships. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 28: 278 – 297.
Tao J, Zhang L, Engling G, Zhang R, Yang Y, Cao J, Zhu C, Wang Q, Luo L. 2013. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research 122: 270 – 283.
Trebs I, Andreae MO, Elbert W, Mayol-Bracero OL, Soto-García LL, Rudich Y, Falkovich AH, Maenhaut W, Artaxo P, Otjes R, Slanina J. 2008. Aerosol Science and Technology, 42(4): 255 – 269.
Trebs I, Meixner FX, Slanina J, Otjes R, Jongejan P, Andreae MO. 2004. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin. Atmospheric Chemistry and Physics 4: 967 – 984.
Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, Ruchirawat M. 2014. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. International Journal of Hygiene and Environmental Health 217 (1):23 – 33.
Watson JG. 2002. Visibility: science and regulation. Journal of the Air & Waste Management Association, 52: 628 – 713.
Yang Y, Chan CY, Tao J, Lin M, Engling G, Zhang Z, Zhang T, Su L. 2012. Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Science of The Total Environment 431: 68 – 77.
Yen MC, Peng CM, Chen TC, Chen CS, Lin NH, Tzeng RY, Lee YA, Lin CC. 2013. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment 78: 35 – 50.
YoussefAgha AH, Jayawardene WP, Lohrmann DK, El Afandi GS. 2012. Air pollution indicators predict outbreaks of asthma exacerbations among elementary school children: integration of daily environmental and school health surveillance systems in Pennsylvania. Journal of Environmental Monitoring 14: 3202 – 3210.
Zanobetti A, Schwartz J, Dockery DW. 2000. Airborne Particles are a Risk Factor for Hospital Admissions for Heart and Lung Disease. Environmental Health Perspectives 108: 1071 – 1077.
Zhang Q, Jimenez JL, Worsnop DR, Canagaratna M. 2007. A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental Science & Technology 41(9): 3213 – 3219.
Zhang Y, Obrist D, Zielinska B, Gertler A. 2013. Particulate emissions from different types of biomass burning. Atmospheric Environment 72: 27 – 35.

Zhu CS, Cao JJ, Shen ZX, Liu SX, Zhang T, Zhao ZZ, Xu HM, Zhang EK. 2012. Indoor and Outdoor Chemical Components of PM2.5 in the Rural Areas of Northwestern China. Aerosol and Air Quality Research 12: 1157 – 1165.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw