進階搜尋


下載電子全文  
系統識別號 U0026-2401201114410000
論文名稱(中文) 應用時域有限差分法模擬微波電漿診測
論文名稱(英文) FDTD Simulation of Microwave Plasma Diagnostics
校院名稱 成功大學
系所名稱(中) 太空天文與電漿科學研究所
系所名稱(英) Assistant, Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
學年度 99
學期 1
出版年 100
研究生(中文) 鄭印呈
研究生(英文) Yin-Cheng Jheng
電子信箱 ycjheng@isaps.ncku.edu.tw
學號 la697111
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-陳秋榮
口試委員-陳炳志
口試委員-河森榮一郎
中文關鍵字 時域有限差分法  電漿  微波診測 
英文關鍵字 FDTD  Plasma  Microwave diagnostics 
學科別分類
中文摘要 微波診測是一種常見的非侵入式電漿診測工具。在本篇論文中,我們運用時域有限差分法模擬電磁波在磁化電漿中傳播,電磁波於磁化電漿內部會受到電漿密度與磁場的不均勻而產生色散,並有不同的傳播特性。本模型是由Maxwell equations,再加上電流密度在cold magnetized plasma中響應之方程式所架構的.此模型可以模擬微波在Ordinary mode和Extraordinary mode 中傳播及反射。在干涉計模型中,我們運用微波干涉計原理測量相位變化,進而得到電漿平均密度。在反射計模型中,我們採用超短脈衝行進於Ordinary mode和Extraordinary mode並完成重建電漿密度分佈的問題。重建電漿密度需要知道截止頻率所對應的反射時間,我們採用了三種方法對反射信號進行時頻分析,並比較了其結果。
英文摘要 Microwave diagnostics are relatively common nonintrusive plasma diagnostic tools. In this thesis, we present simulation studies of microwave diagnostics of plasmas by solving the full wave equations by using a finite-difference time-domain method. The simulation model is based on the Maxwell’s equations and the fluid equations of cold magnetized plasmas, which describes the ordinary and extraordinary modes and their propagation in plasmas. We present results of simulations on (1) the interfelometry measurement of the line-integrated plasma density by measuring the phase shift of monochromatic incident waves; (2) reflectometry measurement of plasma density profiles by using of ultra-short pulse probing waves based on O-mode and X-mode propagation. In the reflectometry measurement, we apply three different methods to process the spectral analysis of the phase delay of the reflected signals. The simulation results demonstrate that the determination of plasma density from ultra-short pulse reflectometry is relatively robust.
論文目次 Content
致謝 2
摘要 3
Abstract 4
CHAPTER 1 Introduction 7
1.1 What is plasma 7
1.2 Nuclear fusion 7
1.3 Plasma diagnosis 10
1.4 Thesis organization 11
CHAPTER 2 Microwave diagnostics 12
2.1 High-frequency electromagnetic waves in cold plasmas 13
2.1.1 Governing equations 13
2.1.2 Cold plasma dielectric tensor 14
2.1.3 Cold plasma dispersion relation 16
2.2 Wentzel-Kramers-Brillouin approximation 20
2.3 Interferometry theory 22
2.4 Reflectometry theory 24
2.4.1 Reflectometry theoretical basis 25
2.4.2 Density profile reconstruction method 26
CHAPTER 3 The finite-difference time-domain method 31
3.1 Numerical formulation 31
3.2 Numerical stability condition 37
3.3 Wave excitation source 39
3.3.1 Sinusoidal waveform 39
3.3.2 Gaussian Waveform 40
3.3.3 Normalized Derivative of a Gaussian waveform 41
3.3.4 Cosine-modulated Gaussian waveform 42
3.4 Mur’s Absorbing Boundary Condition 42
CHAPTER 4 Numerical formulation of EM wave propagation in magnetized plasmas 45
4.1 Numerical formulation using FDTD scheme 45
4.2 Numerical scheme of current density computation 48
4.3 Numerical accuracy 50
CHAPTER 5 Full-wave simulation 54
5.1 1D full-wave simulation of interferometry 54
5.1.1 Simulation model 54
5.1.2 Simulation results 56
5.1.3 Comparison of full wave simulation with W.K.B method 59
5.2 1D full-wave simulation of ultra-short pulse reflectometry 61
5.2.1 Code description and simulation results 61
5.2.2 Spectral analysis of reflected signal 64
5.2.3 Density profile reconstruction using the O-mode 71
5.2.4 Fluctuation measurement 73
5.2.5 Density profile reconstruction using the X-mode 75
Chapter 6 Summary and conclusion 80
References 82
Appendix A : FDTD updating equations 83
Appendix B: Numerical dispersion relation equation 86

參考文獻 [1] Francis F. Chen Introduction to Plasma Physics and Controlled Fusion,
volume 1. Plenum Press, 2 edition, 1984.
[2] T. H. Stix Waves in Plasmas. American Institute of Physics, 1992.
[3] V. Ginzberg Propagation of Electromagnetic Waves in Plasmas.
Gordon and Breach, New York, 1960.
[4] I. H. Hutchinson. Principles of Plasma Diagnostics. Cambridge
University Press, 1987.
[5] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Ant. Prop. 1966.
[6] A. Taflove, and S. C. Hagness, “Computational electrodynamics: The Finite
Difference Time-Domain method 2nd Ed,” Boston, 2000.
[7] Huang, et al. “The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis.” Proc. R. Soc. London, Ser.
A(1998), 454, 903–995.
[8] L.G.Bruskin, and A.Mase, Application of 1D WKB Approximation in
Microwave Reflectometry of Plasma Density Profiles, Review of Scientific Instruments 69, No.5 (1998, May).
[9] N. Bretz, Phys. Fluids B 4, 2414 ~1992.
[10] B.I. Cohen et al., Plasma Phys. Control. Fusion 37, 329 (1995).
[11] B. I. Cohen et al.,Rev, Sci. Instrum. 66 (1995)
[12] B.I. Cohen et al., Phys. Plasmas 6, 1732 (1999).
[13] H. Hojo et al., Fusion Eng. Des. 34-35, 447 (1997).
[14] H. Hoj, A. Mase, Rev. Sci. Instrum. 70, 983 (1999)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-01-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-01-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw