進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2311201313041300
論文名稱(中文) 反置高分子太陽能電池特性改善之研究
論文名稱(英文) Investigation of performance improvement for inverted polymer solar cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 1
出版年 102
研究生(中文) 黃鴻麟
研究生(英文) Hung-Lin Huang
學號 L78981115
學位類別 博士
語文別 英文
論文頁數 79頁
口試委員 指導教授-李欣縈
共同指導教授-李清庭
召集委員-吳忠幟
口試委員-林祐仲
口試委員-劉代山
口試委員-許渭州
口試委員-朱聖緣
口試委員-許佳振
口試委員-蘇水祥
中文關鍵字 氧化鋁鋅奈米柱陣列  載子遷移率平衡  反置高分子太陽能電池  光電化學氧化法處理 
英文關鍵字 AZO nanorod arrays  balanced carrier mobility  inverted polymer solar cells  photoelectrochemical treatment 
學科別分類
中文摘要 在本論文中,利用氧化鋁鋅奈米柱陣列作為反置高分子太陽能電池之載子收集層及載子傳輸層,其中氧化鋁鋅奈米柱陣列是藉由結合雷射干涉微影技術及濕式蝕刻處理所製作,由於氧化鋁鋅奈米柱陣列可增加載子傳輸及收集的機率,因此可提升短路電流密度及外部量子效應,當氧化鋁鋅奈米柱陣列長度為100 nm時,其反置高分子太陽能電池之功率轉換效率可達4.188%。此外,利用五苯環摻雜於P3HT:PCBM作為反置高分子太陽能電池之主動層,藉由空間電荷限制電流法分析與量測電子及電洞遷移率,在五苯環摻雜比例為0.065重量比時,主動層之電洞及電子遷移率達到平衡,當反置高分子太陽能電池的主動層為電子-電洞遷移率平衡時,其反置高分子太陽能電池之功率轉換效率4.31%可被獲得。此外,結合氧化鋁鋅奈米柱陣列結構與電子-電洞遷移率平衡之主動層以提升反置高分子太陽能電池之特性,其最好的轉換效率可達到5.45%,然而,氧化鋁鋅奈米柱陣列為濕式蝕刻製作,因此氧化鋁鋅奈米柱表面會產生許多缺陷。在本論文中,利用光電化學氧化法對氧化鋁鋅奈米柱陣列表面進行處理以減少缺陷,具有電子-電洞遷移率平衡之主動層、氧化鋁鋅奈米柱陣列及光電化學氧化法處理之反置高分子太陽能電池,其最大功率轉換效率可達5.89%。根據實驗結果,具有電子-電洞遷移率平衡之主動層、氧化鋁鋅奈米柱陣列及光電化學氧化法處理均可有效改善反置高分子太陽能電池之轉換效率。
英文摘要 In this dissertation, the Al-doped ZnO (AZO) nanorod arrays were used as the carrier collection layer and the carrier transportation layer of the inverted polymer solar cells. Various AZO nanorod arrays were formed using the combination technique of the laser interference photolithography method and the wet etching process. The short-circuit current density and the external quantum efficiency of the resulting inverted polymer solar cells were improved by the function of the AZO nanorod arrays. The improvement of performances was attributed to the increased probability of charge carrier extraction and charge collection by the AZO nanorod arrays. The power conversion efficiency of 4.188% for the inverted polymer solar cells with the 100-nm-long AZO nanorod arrays was obtained. Furthermore, the pentacene doped P3HT:PCBM was used as the active layer to fabricated inverted polymer solar cells. Using the space-charge-limited current (SCLC) method, it was determined that the optimal hole-electron mobility balance (h/e =1.000) was achieved when the P3HT:PCBM:pentacene active layer had a pentacene doping ratio of 0.065 by weight. The power conversion efficiency of 4.31% for the inverted polymer solar cells with the P3HT:PCBM:pentacene (1:0.8:0.065) active layer was obtained. Besides, the AZO nanorod arrays structure and the P3HT:PCBM:pentacene (1:0.8:0.065) active layer was also combined for increase the conversion efficiency of inverted polymer solar cells. The best power conversion efficiency of the solar cells with pentacene doping and AZO nanorod arrays was 5.45%. However, the AZO nanorod arrays were prepared using the wet etching process. Therefore, the defects could be formed on the surface of the AZO nanorod arrays. In this dissertation, a photoelectrochemical (PEC) treatment was used on the surface of the AZO nanorod arrays to reduce the defects. The maximum power conversion efficiency of 5.89% for the P3HT:PCBM:pentacene (1:0.8:0.065) inverted polymer solar cells with AZO nanorod arrays and PEC treatment was obtained. According to the experimental results, the balanced hole-electron mobility of active layer, the AZO nanorod arrays structure and the PEC surface treatment could be expected as promising methods for improving the conversion efficiency of inverted polymer solar cells.
論文目次 Abstract (in Chinese) II
Abstract (in English) IV
Contacts VII
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Overview of this dissertation 3
References 5
Chapter 2 Theory 10
2.1 Bulk heterojunction polymer solar cells 10
2.2 The equivalent circuit analysis of the solar cells 10
2.3 The laser interference photolithography technique 14
2.4 Schematic of the photoelectrochemical treatment 14
References 16
Chapter 3 Al-doped ZnO nanorod arrays utilized in inverted polymer solar cells 24
3.1 Motivation 24
3.2 Device fabrication 25
3.2.1 Experiment fabrication of Al-doped ZnO nanorod arrays 25
3.2.2 Experiment fabrication of inverted polymer solar cells 25
3.3 Measurement and experimental results 27
3.3.1 AFM surface morphology of the AZO nanorod arrays 27
3.3.2 Conversion efficiency performance 27
3.3.3 Dark current density performance 28
3.3.4 External quantum efficiency performance 30
3.3.5 Reflection performance 31
3.4 Summary 31
References 33
Chapter 4 The pentacene doped active layer utilized in inverted polymer solar cells 43
4.1 Motivation 43
4.2 Device fabrication 44
4.2.1 Experiment fabrication of solar cells with pentacene doped active layer 44
4.3 Measurement and experimental results 45
4.3.1 The hole-electron mobility 45
4.3.2 XRD spectra of active layer 47
4.3.3 AFM surface roughness of active layer 48
4.3.4 Absorption performance 48
4.3.5 Conversion efficiency performance 49
4.3.6 External quantum efficiency 50
4.4 Summary 51
References 52
Chapter 5 PEC surface treatment utilized in inverted polymer solar cells 65
5.1 Motivation 65
5.2 Device fabrication 66
5.2.1 Experiment fabrication of solar cells with PEC treatment 66
5.3 Measurement and experimental results 67
5.3.1 Conversion efficiency performance 67
5.3.2 Dark current density performance 68
5.3.3 External quantum efficiency 69
5.4 Summary 69
References 71
Chapter 6 Conclusions and future work 78
參考文獻 Chapter 1

[1] G. Berndes, M. Hoogwijk, and R. V. D. Broek, “The contribution of biomass in the future global energy supply: a review of 17 studies,” Biomass Bioenerg., vol. 25, pp. 1-28, 2003.
[2] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build., vol. 40, pp. 394-398, 2008.
[3] C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenarios meeting stringent Co2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961-976, 2003.
[4] A. Evans, V. Strezov, and T. J. Evans, “Assessment of sustainability indicators for renewable energy technologies,” Renew. Sust. Energ. Rev., vol. 13, pp. 1082-1088, 2009.
[5] V. Sivakov, G. Andrä, A. Gawlik, J. Plentz, F. Falk, and S. H. Christainsene, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett., vol. 9, pp. 1549-1554, 2009.
[6] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys., vol. 101, pp. 093105-1-093105-8, 2007.
[7] B. Rech, T. Repmann, M. N. V. D. Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films, vol. 511-512, pp. 548-555, 2006.
[8] C. Colombo, M. Heib, M. Grätzel, and F. I. Morral, “Gallium arsenide p-i-n radial structure for photovoltaic applications,” Appl. Phys. Lett., vol. 94, pp. 173108-1-173108-3, 2009.
[9] M. Yamaguchi, “III-V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells, vol. 75, pp. 261-269, 2003.
[10] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III-V solar cells: current status and future potential,” Sol. Energy, vol. 79, pp. 78-85, 2005.
[11] V. I. Klimov, “Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication,” Appl. Phys. Lett., vol. 89, pp. 123118-1-123118-3, 2006.
[12] M. Afzaal and P. O’Brien, “Recent developments in II-VI and III-VI semiconductors and their applications in solar cells,” J. Mater. Chem., vol. 16, pp. 1597-1602, 2006.
[13] I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, “Metal/CdTe/CdS/Cd1-xZnxS/TCO/glass: A new CdTe thin film solar cell structure,” Sol. Energy Mater. Sol. Cells, vol. 61, pp. 203-211, 2000.
[14] C. W. Tang, “Multilayer organic photovoltaic elements” US patent 4,164,431, 1979.
[15] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, pp. 1789-1791, 1995.
[16] P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, vol. 425, pp. 158-162, 2003.
[17] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells,” Adv. Funct. Mater., vol. 14, pp. 1005-1011, 2004.
[18] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, pp. 864-868, 2005.
[19] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Energy Mater., vol. 22, pp. E135-E138, 2010.
[20] W. U. Huyuh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, pp. 2425-2427, 2002.
[21] T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng, and Y. Cao, “Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure,” J. Phys. Chem. C, vol. 114, pp. 6849-6853, 2010.
[22] M. P. D. Jong, L. J. V. Ijzendoom, and M. J. A. D. Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett., vol. 77, pp. 2255-2257, 2000.
[23] A. Benor, S. Y. Takizawa, C. Pérez-Bolívar, and P. A. Jr., “Efficiency improvement of fluorescent OLED by tuning the working function of PEDOT:PSS using UV-ozone exposure,” Org. Electron., vol. 11, pp. 938-945, 2010.
[24] X. W. Sun, D. W. Zhao, L. Ke, A. K. K. Kyaw, G. Q. Lo, and L. Kwong, “Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer,” Appl. Phys. Lett., vol. 97, pp. 053303-1-053303-3, 2010.
[25] L. Yang, H. Xu, H. Tian, S. Yin, and F. Zhang, “Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 1831-1834, 2010.
[26] C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett., vol. 93, pp. 193307-1-193307-3, 2008.
[27] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer,” Adv. Mater., vol. 23, pp. 1679-1683, 2011.
[28] S. K. Hau, H. L. Yip, H. Ma, and A. K. Y. Jen, “High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer,” Appl. Phys. Lett., vol. 93, pp. 233304-1-233304-3, 2008.
[29] L. M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater., vol. 21, pp. 1434-1449, 2009.
[30] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, and A. K. Y. Jen, “Interfacial modification to improve inverted polymer solar cells,” J. Mater. Chem., vol. 18, pp. 5113-5119, 2008.
[31] G. Perrier, R. D. Bettignies, S. Berson, N. Lemaître, and S. Guillerez, “Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 210-216, 2012.

Chapter 2

[1] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells” Adv. Mater., vol. 19, pp. 1551-1566, 2007.
[2] C. Deibel and V. Dyakonov, “Polymer-fullerene bulk heterojunction solar cells,” Rep. Prog. Phys., vol. 73, pp. 1-39, 2010.
[3] H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res., vol. 19, pp. 1924-1945, 2004.
[4] C. Winder and N. S. Sariciftci, “Low bandgap polymer for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem., vol. 14, pp. 1077-1086, 2004.
[5] G. Dennler and N. S. Sariciftci, “Flexible conjugated polymer-based plastic solar cells: from basics to applications,” Proc. IEEE, vol. 93, pp. 1429-1439, 2005.
[6] J. Pallarés, R. Cabré, and L. F. Marsal, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys., vol. 100, pp. 084513-1-084513-5, 2006.
[7] M. K. Lee, J. C. Wang, S. F. Horng, and H. F. Meng, “Extraction of solar cell series resistance without presumed current-voltage functional form,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 578-582, 2010.
[8] B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B, vol. 75, pp. 115327-1-115327-11, 2007.
[9] J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett., vol. 34, pp. 1783-1785, 2009.
[10] C. H. Choi and C. J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology, vol. 17, pp. 5326-5333, 2006.
[11] M. G. Capeluto, G. Vaschenko, M. Grisham, M. C. Marconi, S. Ludueña, L. Pietrasanta, Y. Lu, B. Parkinson, and C. S. Menoni, “Nanopatterning with interferometric lithography using a compact λ=46.9-nm laser,” IEEE Trans. Nanotechnol., vol. 5, pp. 3-7, 2006.
[12] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y. J. Lee, “Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor,” Sensors, vol. 11, pp. 4648-4655, 2011.
[13] Y. S. Chiu and C. T. Lee, “pH Sensor investigation of various-length photoelectrochemical passivated ZnO nanorod arrays,” J. Electrochem. Soc., vol. 158, pp. J282-J285, 2011.
[14] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., vol.12, pp. 578-582, 2013.
[15] Y. S. Chiu, C. Y. Tseng, and C. T. Lee, “Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array,” IEEE Sens. J., vol. 12, pp. 930-934, 2012.

Chapter 3

[1] D. Gupta, M. Bag, and K. K. Narayan, “Correlating reduced fill factor in polymer solar cells to contact effects,” Appl. Phys. Lett., vol. 92, pp. 093301-1-093301-3, 2008.
[2] M. M. Stylianakis and E. Kymakis, “Efficiency enhancement of organic photovoltaics by addition of carbon nanotubes into both active and hole transport layer,” Appl. Phys. Lett., vol. 100, pp. 093301-1-093301-5, 2012.
[3] S. Wang, T. Sakurai, R. Kuroda, and K. Akimoto, “Energy band bending induced charge accumulation at fullerene/bathocuproine heterojunction interface,” Appl. Phys. Lett., vol. 100, pp. 243301-1-243301-4, 2012.
[4] C. J. Brabec, S. Gowisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater., vol. 22, pp. 3839-3856, 2010.
[5] Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells,” Appl. Phys. Lett., vol. 90, pp. 043504-1043504-3, 2007.
[6] A. Vasudevan, S. Jung, and T. Ji, “Hybrid solar cells using ZnO nano rods,” Proc. SPIE, vol. 7416, pp. 741607-1741607-11, 2009.
[7] Y. Hames, Z. Alpaslan, A. Kösemen, S. E. San, and Y. Yerli, “Electrochemically grown ZnO nanorods for hybrid solar cell applications,” Sol. Energy, vol. 84, pp. 426-431, 2010.
[8] X. Buliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, “ Enhanced performance in polymer solar cells by surface energy control,” Adv. Funct. Mater., vol. 20, pp. 4381-4387, 2010.
[9] Y. Matsuo, J. Hatano, T. Kuwabara, and K. Takahashi, “Fullerene acceptor for improving open-circuit voltage in inverted organic photovoltaic devices without accompanying decrease in short-circuit current density,” Appl. Phys. Lett., vol. 100, pp. 063303-1-063303-3, 2012.
[10] K. Harada, T. Edura, and C. Adachi, “Nanocrystal growth and improved performance of small molecule bulk heterojunction solar cells composed of a blend of chloroaluminum phthalocyanine and C70,” Appl. Phys. Express, vol. 3 pp. 121602-1-121602-3, 2010.
[11] M. Kubo, Y. Shinmura, N. Ishiyama, T. Kaji, and M. Hiramoto, “Invertible organic photovoltaic cells with heavily doped organic/metal ohmic contacts,” Appl. Phys. Express, vol. 5, pp. 092302-1-092302-3, 2012.
[12] H. Kageyama, H. Kajii, Y. Ohmori, and Y. Shirota, “MoO3 as a cathode buffer layer material for the improvement of planar pn-heterojunction organic solar cell performance,” Appl. Phys. Express, vol. 4, pp. 032301-1-032301-3, 2011.
[13] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett., vol. 93, pp. 221107-1-221107-3, 2008.
[14] Y. Jouane, S. Colis, G. Sehmerber, P. Kern, A. Dinia, T. Heiser, and Y. A. Chapuis, “Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT:PCBM for organic solar cells,” J. Mater. Chem., vol. 21, pp. 1953-1958, 2011.
[15] D. K. Schroder, “Semiconductor material and device characterization,” Wiley, New York, 3red ed., pp. 157-158, 2006.
[16] L. Stamenic, E. Smiley, and K. Karim, “Low light conditions modeling for building integrated photovoltaic (BIPV) systems,” Sol. Energy, vol. 77, pp. 37-45, 2004.
[17] S. M. Sze, “Semiconductor devices, physics and technology,” Wiley, New York, 2ed ed., pp. 323, 2001.

chapter 4

[1] J. T. Chen and C. S. Hsu, “Conjugated polymer nanostructures for organic solar cell applications,” Polym. Chem., vol. 2, pp. 2707-2722, 2011.
[2] S. Chuangchote, P. Ruankham, T. Sagawa, and S. Yoshikawa, “Improvement of power conversion efficiency in organic photovoltaics by slow cooling in annealing treatment,” Appl. Phys. Express, vol. 3, pp. 122302-1-122302-3, 2010.
[3] F. C. Krebs, J. Fyenbo, and M. Jørgensen, “Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexorgraphic printing, slot-die coating and rotary screen printing,” J. Mater. Chem., vol. 20, pp. 8994-9001, 2010.
[4] H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III-V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci., vol. 2, pp. 174-192, 2009.
[5] C. Y. Tseng and C. T. Lee, “Mechanisms of (NH4)2Sx-treated III-V compound triple-junction solar cells incorporating with hybrid electrode,” Appl. Phys. Lett., vol. 101, pp. 033902-1-033902-4, 2012.
[6] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer,” Adv. Mater., vol. 23, pp. 1679-1683, 2011.
[7] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cells employing a sol-gel ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett., vol. 93, pp. 221107-1-221107-3, 2008.
[8] F. C. Krebs and K. Norrman, “Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing,” Prog. Photovoltaics, vol. 15, pp. 697-712, 2007.
[9] Y. Zhang, S. K. Hau, H. L. Yip, Y. Sun, O. Acton, and A. K. Y. Jen, “Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione,” Chem. Mater., vol. 22, pp. 2696-2698, 2010.
[10] T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, and K. Takahashi, “Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1476-1482, 2008.
[11] C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, and Y. N. Li, “Low work function metal modified ITO as cathode for inverted polymer solar cells,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 1618-1621, 2010.
[12] M . M. Mandoc and L. J. A. Koster, “Optimum charge carrier mobility in organic solar cells,” Appl. Phys. Lett., vol. 90, pp. 133504-1-133504-3, 2007.
[13] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, pp. 864-868, 2005.
[14] P. N. Murgatroyd, “Theory of speace-charge-limited current enhanced by Frenkel effect,” J. Phys. D: Appl. Phys., vol. 3, pp. 151-156, 1970.
[15] Y. Terada, N. Takeuchi, S. Yoshida, A. Taninaka, O. Takeuchi, and H. Shigekawa, “Effect of defects buried in pentacene/alkanethiol self-assembled monolayer/Au film on its electronic properties visualized by scanning tunneling microscopy/spectroscopy,” Jpn. J. Appl. Phys., vol. 49, pp. 08LB08-1-08LB08-4, 2010.
[16] C. W. Chu, V. Shrotriya, G. Li, and Y. Yang, “Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells,” Appl. Phys. Lett., vol. 88, 153504-1-153504-3, 2006.
[17] P. Vanleake, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Hean, P. Heremans, J. Poortmans, and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2150-2158, 2006.
[18] J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, and K. Cho, “Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells,” J. Phys. Chem. C, vol. 113, pp. 17579-17584, 2009.
[19] M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiecny photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(-3methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,” Appl. Phys. Lett., vol. 87, pp. 083506-1-083506-3, 2005.
[20] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Appl. Phys. Lett., vol. 98, pp. 043704-1-043704-5, 2005.
[21] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, and O. Ambacher, “Absorption and crystallinity of poly(3-hexylthiophene)/fullerene blends in dependence on annealing temperature,” Thin Solid Films, vol. 511-512, pp. 483-485, 2006.

Chapter 5

[1] D. M. Tanenbaum, H. F. Dam, R. Rösch, M. Jørgensen, H. Hoppe, and F. C. Krebs, “ Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules,” Sol. Energy Mater. Sol. Cells, vol. 97, pp. 157-163, 2012.
[2] M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 686-714, 2008.
[3] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett., vol. 93, pp. 221107-1-221107-3, 2008.
[4] S. K. Hau, Y. J. Cheng, H. L. Yip, Y. Zhang, H. Ma, and A. K. Y. Jen, “Effect of chemical modification of fullerene-based self-assembled monolayers on the performance of inverted polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 7, pp. 1892-1902, 2010.
[5] S. K. Hau, H. L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev., vol. 50, pp. 474-510, 2010.
[6] G. Perrier, R. D. Bettignies, S. Berson, H. Lemaître, and S. Guillerez, “Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 210-216, 2012.
[7] Y. S. Chiu and C. T. Lee, “pH sensor investigation of various-length photoelectrochemical passivated ZnO nanorod arrays,” J. Electrochem, Soc., vol. 158, pp. J282-J285, 2011.
[8] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., vol. 12, pp. 578-582, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-11-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw