進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2310201904334200
論文名稱(中文) 搭載於探空火箭之增強型阻滯電位分析儀研發
論文名稱(英文) The Development of the Intensified Retarding Potential Analyzer (IRPA) onboard Sounding Rockets
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 107
學期 1
出版年 107
研究生(中文) 吳庭州
研究生(英文) Ting-Chou Wu
學號 LA6051093
學位類別 碩士
語文別 英文
論文頁數 92頁
口試委員 指導教授-陳炳志
口試委員-趙吉光
口試委員-陳佳宏
中文關鍵字 離子能量分布  電離層  探空火箭  阻滯電位分析儀 
英文關鍵字 ion energy distribution  ionosphere  sounding rocket  retarding potential analyzer 
學科別分類
中文摘要 本論文中所發展的增強型阻滯電位分析儀將安裝於成功大學研製之探空火箭上,為「中氣層與電離層電漿探索儀器組」(MIPEX)的其中一組感測器。MIPEX之科學目標是透過現地量測,分析中氣層與低電離層的環境電漿參數,包括電子與離子之速度、溫度與能量分布等,了解其動態過程。
增強型阻滯電位分析儀是在傳統阻滯電位分析儀為基礎的創新設計。阻滯電位分析儀廣泛地運用在太空電漿現地量測中,透過量測離子能量分布可分別獲得飛行方向離子飄移速度、密度及溫度。使用電子倍增管取代傳統的金屬集極,增強型阻滯電位分析儀可有效增加其量測動態範圍、訊噪比及頻率響應,以滿足此次探空火箭任務的科學需求。儀器設計原理、電路結構、離子入射軌跡之理論模擬及飛行體在實驗中的測試結果將在本論文中探討。
在實際測量中,離子入射軌跡易受儀器內電位分布影響,為了瞭解並估計其誤差貢獻,使用SIMION軟體來檢驗由增強型阻滯電位分析儀結構所造成的牆壁效應和網格電位溢出效應,發現造成最大的誤差大約為7%,而最主要造成此誤差的原因是,由於網格電位溢出效應所造成的電流-電壓曲線偏移。因此,為了降低結構所造成的誤差,增強型阻滯電位分析儀飛行體設計使用較大的口徑。
經由太空電漿實驗腔實驗,可以驗證電子倍增管增益及動態範圍。在實際實驗中,金屬電極上很容易附著汙染層,造成電位改變,進而影響實驗結果。為了移除電極汙染效應,篩選離子能量時,IRPA使用脈衝三角波作以掃描電壓。從實驗結果可知,藉由使用脈衝三角波,其有著時變的高電壓及維持0V的低電壓,電極汙染所造成的阻抗效應和電位偏移效應均可被移除。另在電漿密度為為50 cm-3 的極低電漿密度下,增強型阻滯電位分析儀的性能也在太空電漿實驗腔實驗中獲得驗證。
英文摘要 The development and verification of the intensified retarding potential analyzer (IRPA) as one of the sensors in the space plasma instrument package ‶Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)″ which is going to be installed onboard a university-based hybrid sounding rocket to investigate the electrodynamic processes in-situ in the D, E layers of the ionosphere above Taiwan is reported.
IRPA is innovated from the conventional retarding potential analyzer (RPA), a widely used in-situ plasma measurement instrument, to obtain ion drift velocity in ram direction, ion density and ion temperature by measuring the ion energy distribution. By replacing the conventional metal collector with a channelelectron multiplier (CEM), IRPA is capable of effectly increasing the dynamic range, signal-to-noise ratio and frequency response to satisfy the scientific needs of this hybrid rocket mission. In this work, the design concept, performance analysis by simulation, hardware development and in-lab experiment of IRPA is presented respectively.
In practical measurement, the trajectories of the incident ions are easily affected by the external potential distribution of the instrument. To investigate the effects and to estimate the error, the wall effect and the grid potential leakage effect caused by the IRPA structure are examined comprehensively by the SIMION software, and the maximum induced uncertainty is about 7%, which is mainly contributed by the shift of the I-V curve resulting from the grid potential leakage effect. As the result, the flight model of the IRPA is designed with a larger aperture to reduce the structure effect and a reduced error is expected.
The gain and dynamic range of CEM are verified in the space plasma operation chamber (SPOC) at NCKU. Metal electrodes are easily contaminated by a thin dielectric, which significantly affects the measurement result. To remove the effect caused by this contamination, a pulsed triangular waveform as a sweeping voltage was utilized for the ion energy selection. It is demonstrated that both the contamination impedance effect and the potential shift effect are removed by the waveform with a varying VH and a VL with 0V respectively. The performance of the IRPA under the environment with an extremely low plasma densities, ~50 cm-3, is also verified in SPOC.
論文目次 Abstract i
摘要 iii
誌謝 v
Index vi
List of figures ix
List of tables xvi
Chapter 1. Introduction 1
1.1 Plasma 1
1.2 The Earth’s ionosphere 2
1.3 NCKU Sounding rocket mission 6
1.4 Mesosphere and Ionosphere Plasma Exploration Complex 7
1.5 Thesis motivations 10
Chapter 2. The Design of the Intensified Retarding Potential Analyzer 12
2.1 A brief review of the Retarding Potential Analyzer 12
2.2 The Principle of the IRPA 14
2.3 Mechanical structure 23
2.4 Channelelectron Multiplier 26
2.5 Analog circuit design 31
2.5.1 Current-to-voltage converter with low-pass filter 32
2.5.2 Buffer with low-pass filter 33
2.5.3 Differential amplifier with low-pass filter 34
2.5.4 Inverting amplifier with low-pass filter 35
2.5.5 Isolation amplifier 36
2.6 Frequency response of the analog amplifier 38
Chapter 3. Ion motion simulation 43
3.1 The effects caused by IRPA structure 43
3.1.1 Grid effect 43
3.1.2 Wall effect 45
3.1.3 Double-meshes used to reduce the wall effect and potential leakage effect 46
3.2 I-V curve and ion energy distribution simulation 49
3.3 I-V curve distortion and the corresponding error 55
Chapter 4. Experiments in Space Plasma Operation Chamber 57
4.1 Plasma environment in SPOC 57
4.2 Experiment configuration 60
4.3 Measurement of the CEM gain at different bias voltages 61
4.4 I-V curve measured with a triangular waveform 62
4.5 Electrode contamination effects and solutions 65
4.6 I-V curve measured with a pulsed triangular waveform 70
4.7 IRPA measurement in extremely low plasma density environment 86
Chapter 5. Conclusion 88
Reference 90
參考文獻 陳炳志(民106)。106年度國家實驗研究院國家太空中心採購計畫書「前瞻混合式探空火箭酬載」(案號:NSPO-S-106081 ),未出版。
Analog Devices (2012), AD7671: 16-Bit, 1 MSPS CMOS ADC Data Sheet (Rev. C).
Budden, K. G. (2009), Radio Waves in the Ionosphere, Cambridge, UK: Cambridge University Press.
Bilitza, D. and B. W. Reinisch (2008), International reference ionosphere 2007: improvements and new parameters, Advances in space research, 42(4), 599-609.
Chao, C. K., Y. H. Chu, C. L. Su, and S. Minami (2012), In-situ measurement of Ionospheric E-region plasma irregularities over Taiwan, Terr. Atmos. Ocean. Sci., 23(3), 333-342.
Chen, A. B., Y. Yang, and H. K. Fang (2017), NSPO Sounding Rocket Mission Mission Definition Review (MDR) Report.
Chen, A. B., Y. Yang, and H. K. Fang (2017), NSPO Sounding Rocket Mission Preliminary Design Review (PDR) Report.
Correira, J., Aikin, A., Grebowsky, J., Pesnell, W., and J. Burrows (2008), Seasonal variations of magnesium atoms in the mesosphere‐thermosphere, Geophysical Research Letters, 35(6).
Fanelli, L., S. Nel, G. D. Earle, C. Fish, R. L. Davidson, R. V. Robertson, P. Marquis, V. Garg, N. Somasundaram, L. Kordella, and P. kennedy (2015), A versatile retarding potential analyzer for nano-satellite platfroms, Review of Scientific Instruments, 86, 124501.
Fang, H. K., K. I. Oyama, and C. Z. Cheng (2014), Electrode contamination effects of retarding potential analyzer, Review of Scientific Instruments, 85, 015104.
Fang, H. K., K. I. Oyama, and C. Z. Cheng (2015), Plasma Measurements in the Space Plasma Operation Chamber (SPOC), Chin. J. Phys., 53(1), 1-30.
Fang, H. K., K. I. Oyama, and A. B. Chen (2017), Back-diffusion plasma generator for ionosphere study, Plasma Sources Science and Technology, 26, 115010.
Homles, J. C. and E. P. Szuszczewicz (1975), Versatile plasma probe, Review of Scientific Instruments, 46, 592.
Immel, T. J., S. England, S. B. Mende, R. A. Heelis, C. R. Englert, J. Edelstein, H. U. Frey, E. Taylor, W. Craig, G. S. Bust, G. Crowley, J. M. Forbes, J. C. M. C. Gerard, J. Harlander, J. Huba, B. A. Hubert, F. Kamalabadi, J. J. Makela, A. I. Maute, R. J. Meier, C. L. Raftery, K. Hauck, P. Rochus, O. Siegmund, A. W. Stephan, G. R. Swenson, S. Frey, D. L. Hysell, A. Saito (2016), The Ionospheric Connection Explorer (ICON) : Mission Design and Planning, AGU Fall meeting abstract SA11A-01, San Francisco, USA.
Kelley, M. C. (1989), The Earth’s Ionosphere, Plasma Physics and Electrodynamics, San Diego, California: Academic Press, Inc.
Knudsen W. C. (1966), Evaluation and Demonstration of the use of retarding potential analyzers for Measuring several Ionospheric Quantities, Journal of Geophysical Research, 71.
Lin, Z. W., C. K. Chao, J. Y. Liu, C. M. Huang, Y. H. Chu, C. L. Su, Y. C. Mao, and Y. S. Chang (2017), Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite, Terr. Atmos. Ocean. Sci., 28, 99-110.
Minami, S. and Y. Takeya (1982), Ion Temperature Determination in the Ionosphere by Retarding Potential Analyzer Aboard Sounding Rocket, Journal of Geophysical Research, 87, 713-730.
Oyama, K. I., C. H. Lee, H. K. Fang and C. Z. Cheng (2012), Means to remove electrode contamination effect of Langmuir probe measurement in space, Review of Scientific Instruments, 83, 055113.
Spencer, N. W., L. H. Brace, & D. W. Grimes (1973), The atmosphere explorer spacecraft system, Radio Science, 8, 267-269.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-11-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-11-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw