進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2309201918265700
論文名稱(中文) 氮化硼薄膜在矽與石墨基板上的磊晶成長
論文名稱(英文) Epitaxial growth of Boron Nitride thin film on Si and Graphite substrates
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 林臻佑
研究生(英文) Zhen-You Lin
學號 L26064276
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-吳忠霖
口試委員-陳宜君
口試委員-羅光耀
口試委員-陳家浩
中文關鍵字 電漿輔助式分子束磊晶  六方氮化硼  薄膜成長  石墨基板  矽基板 
英文關鍵字 Plasma-assisted molecular beam epitaxy  Hexagonal Boron Nitride  Graphite 
學科別分類
中文摘要 根據文獻指出,現今氮化硼薄膜成長技術存在多項限制:1.無法成長高品質且大面積的氮化硼薄膜;2.若要實際應用成長出的氮化硼薄膜,必須透過轉印的方式將氮化硼薄膜轉印至目標基板上,然此方式卻易導致薄膜品質下降。有鑒於此,本論文擬利用分子束磊晶系統低成長速率以及可控制層數的特性,成長出高品質的氮化硼薄膜。在傳統半導體的製程上,常用矽當作基板,因此選擇在矽基板上成長的氮化硼薄膜可省掉轉印的步驟,但矽基板和氮化硼的晶格匹配度非常低。故本研究先以與氮化硼薄膜晶格匹配度高的石墨當作基板,利用在石墨基板上成長的經驗與條件將氮化硼薄膜成長至矽基板上。
研究中從SEM和AFM影像發現,在石墨基板上成長的氮化硼薄膜屬於橫向生長方式,有一定的成長速率,因此可以藉由控制時間達到單層氮化硼薄膜,且從拉曼光譜測量觀測到氮化硼薄膜受應變影響而變化;在矽基板上,本研究利用交替成長方式以及石墨基板條件成長方式成長氮化硼薄膜,從拉曼光譜測量中亦觀測到受應變影響而變化,並且從SEM與AFM影像中可看到,有別於石墨基板,成長在矽基板上的氮化硼薄膜屬於縱向生長方式。研究結果顯示,無論是哪種成長方式,從TEM切面中皆可看到六方氮化硼的c軸結構,然而以石墨基板為條件的成長方式對於矽基板來說過於高溫,薄膜品質會因矽原子參雜進氮化硼薄膜中而下降,因此若要在矽基板上成長氮化硼薄膜,交替成長為較佳的成長條件。
英文摘要 Hexagonal boron nitride (h-BN) has excellent physical properties and chemical stability with many applications in 2D materials. In recent study, h-BN has grown on metals have to transfer to desirable substrate resulting in small size and defect. Here we use two kinds of substrate which are graphite and silicon. In traditional semiconductor process, silicon is the most commonly used substrate. We demonstrate growth of h-BN directly on Si substrate, but silicon and h-BN has large lattice mismatch. Therefore, we demonstrate growth of h-BN on graphite because graphite and h-BN has low lattice mismatch. Using the experience and conditions of growth on the graphite substrate grows h-BN on silicon substrate. We investigate h-BN film by AFM, SEM, TEM, Raman, RHEED and XPS after growth.
論文目次 目錄
第一章 緒論 1
1.1六方氮化硼(hexagonal boron nitride, h-BN) 1
1.1.1六方氮化硼的特性 1
1.1.2六方氮化硼的製作 1
1.2研究動機 3
第二章 實驗儀器及原理 6
2.1電漿輔助式分子束磊晶系統(Plasma-assisted Molecular Beam Epitaxy,PA-MBE) 6
2.1.1分子束磊晶(Molecular Beam Epitaxy,MBE) 6
2.1.2反射式高能電子繞射儀(Reflection high energy electron diffraction, RHEED) 8
2.1.3射頻電漿源(Radio Frequency Plasma) 11
2.1.4 分子束磊晶蒸鍍源(Effusion cells) 13
2.2拉曼光譜儀(Raman spectroscopy) 15
2.2.1拉曼光譜儀(Raman spectroscopy) 15
2.2.2拉曼散射(Raman scattering) 15
2.3掃描式電子顯微鏡(Scanning Electron Microscope ,SEM) 17
2.3.1掃描式電子顯微鏡(Scanning Electron Microscope ,SEM) 17
2.3.2電子束和樣品交互作用 17
2.4穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 19
2.5原子力顯微鏡(Atomic Force Microscopic, AFM) 21
2.5.1原子力顯微鏡(Atomic Force Microscopic, AFM) 21
2.4.2原子力顯微鏡工作與操作原理 21
2.6 X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 24
2.6.1光電子能譜原理 24
第三章 實驗方法與量測 25
3.1六方氮化硼製備 25
3.1.1基板選擇 25
3.1.2實驗流程 26
3.1.3 標準清洗法(RCA Standard Clean) 29
3.1.4矽基板熱處理-7x7表面重構 31
3.1.5 β-Si3N4薄膜 32
3.1.6 六方氮化硼薄膜 32
3.2實驗操作和量測 34
3.2.1 反射式高能電子繞射儀即時量測與分析 34
3.2.2 掃描式電子顯微鏡分析 35
3.2.3 拉曼光譜分析 36
3.2.4 原子力顯微鏡分析 37
3.2.5 穿隧式電子顯微鏡分析 38
3.2.6 光電子能譜分析 38
第四章 結果與討論 40
4.1六方氮化硼成長在高定向熱解石墨基板上 40
4.1.1成長條件 40
4.1.2 RHEED影像分析 41
4.1.3 掃描式電子顯微鏡影像分析 44
4.1.4 拉曼光譜分析 48
4.1.5 原子力顯微鏡影像分析 53
4.1.6 光電子能譜分析 55
4.2六方氮化硼成長在矽基板上 57
4.2.1氮化矽薄膜 57
4.2.2氮化矽薄膜SEM影像分析 58
4.2.3氮化硼薄膜成長條件 60
4.2.4 RHEED影像分析 61
4.2.5 掃描式電子顯微鏡影像分析 63
4.2.6 拉曼光譜分析 66
4.2.7 原子力顯微鏡影像分析 68
4.2.8 掃描穿透式電子顯微鏡分析 70
4.2.9 光電子能譜分析 73
第五章 結論 76
參考文獻 78
參考文獻 [1] K. S. Novoselov et al, Electric field effect in atomically thin carbon films. Science,306,666–669 (2004).
[2] C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, et al, Commensurate–incommensurate transition in graphene on hexagonal boron nitride.
Nat. Phys., 10, p. 451(2014).
[3] G. Cassabois, P. Valvin & B. Gil,Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics ,10, p262–266 (2016).
[4] Geim, A. K., Grigorieva, I. V. ,Van Der Waals Heterostructures. Nature 499, 419−425(2013).
[5]Dean, C. R., Young, A. F., Meric, I., et al, Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 5, p722-726(2010).
[6] Kubota, Y et al, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science,317,5840,917-932(2007).
[7] Lin, Tianquan et al, Rapid Microwave Synthesis of Graphene Directly on h-BN with Excellent Heat Dissipation Performance. ACS Applied Materials & Interfaces ,6,5,3088-3092(2014).
[8] Li, L. H. et al, Strong Oxidation Resistance of Atomically Thin Boron Nitride
Nanosheets. ACS Nano, 8, 1457−1462(2014).
[9] Guo,Y. et al, Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials. ACS Nano,10,9,8980-8988(2016).
[10] Glavin et al, Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition, Thin Solid Films,572,245-250(2014).
[11] Ryan Page et al, Rotationally Aligned Hexagonal Boron Nitride on Sapphire by HighTemperature Molecular Beam Epitaxy. Physical Review Materials,3,6(2019).
[12] S. Nakhaie et al, Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Applied Physics Letters,106, 213108(2015).
[13] Debora Pierucci et al, Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: Electronic properties and band structure, Applied Physics Letters,112, 253102 (2018).
[14] Pervaiz Ahmada et al, Decomposition-adsorption-deposition: An effective and novel technique for synthesis of hexagonal boron nitride microsheets. Materials Science in Semiconductor Processing, 88,161–166(2018).
[15] Ki Kang Kim et al, Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Letter ,12,1,161-166(2012).
[16] Yang,HH et al, Shape evolution of two dimensional hexagonal boron nitride single domains on Cu/Ni alloy and its applications in ultraviolet detection, Nanotechnology,30,24(2019).
[17] Jeong.H et al, Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Scientific Reports,9(2019).
[18] Park, J.-H. et al, Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano, 8, 8520–8528 (2014).
[19] R.R. Schaller, Moore's law: past, present and future. IEEE Spectrum,34,6(1997 ).
[20] Jang,WD et al, Effect of Interface Traps on the Device Performance of InGaAs-Based Gate-All-Around Tunneling Field-Effect Transistors. Journal of Nanoscience and Nanotechnology,19,10,6036-6042(2019).
[21]Lee,CW et al, High-Temperature Performance of Silicon Junctionless MOSFETs. IEEE Transactions on Electron Devices,57,3,620-625(2010).
[22] OGURA,S et al, Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Transactions on Electron Devices,27,8,1359-1367(1980).
[23] Cui, X. et al, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 10,6,534-540(2015).
[24] Digh Hisamoto et al, FinFET-a self-aligned double-gate MOSFET scalable to 20 nm, IEEE Transactions on Electron Devices,47,12(2000).
[25] N. Yamamoto, N. Kondo, Y. Nanishi ,J.Crystal Growth, 99, p. 302 (1990).
[26]Ayahiko Ichimiya et al, Reflection High-Energy Electron Diffraction, Cambridge University Press,3-10(2014).
[27] KHL Zhang, Creation and Ordering of Oxygen Vacancies at WO3−δ and Perovskite Interfaces. ACS Appl. Mater. Interfaces, 10, 17480−17486(2018).
[28] Kaaya Ismail, Fabrication and characterisation of SERS substrates through photo-deposition of Gold Nanoparticles. The Abdus Salam International Center for Theoretical Physics,P10(2015).
[29]Rose, H H., Optics of high-performance electron Microscopes. Science and Technology of Advanced Materials ,9(2008).
[30]Cowley, J. M., Diffraction physics. Elsevier Science B. V. ,p3-24(1995).
[31]Park Systems, Basic Contact AFM & Dynamic Force Microscope (DFM), Nanotechnology Solutions Partner,p94.
[32] US Vogl, The Mechanism of SEI Formation on Single Crystal Si(100), Si(110) and Si(111) Electrodes. J. Electrochem. Soc.,162,12,A2281-A2288(2015).
[33]Binnig, G., Rohrer, H.; Gerber, Ch., Weibel, E., 7 × 7 Reconstruction on Si(111) Resolved in Real Space. Phys. Rev. Lett., 50 (2): 120–126(1983).
[34]Roman V. Gorbachev et al, Hunting for Monolayer Boron Nitride:Optical and Raman Signatures, Small ,7,4,465–468(2011).
[35]Qiran Cai et al, Raman signature and phonon dispersion of atomically thin boron nitride, Nanoscale, 9, 3059–3067(2017).
[36]Yoshimi Horio et al, Behavior of Wave Field on Graphite Surface Observed Using Reflection High-Energy Electron Diffraction Technique. e-J. Surf. Sci. Nanotech., 6 , 88-92(2018).
[37]H. Henck et al, Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice. Phys. Rev. B 95, 85410 (2017).
[38]Zheng Liu et al, Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers, Nano Lett. , 11, 2032–2037(2011).
[39]Andrea C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phononcoupling, doping and nonadiabatic effects. Solid State Communications 143 47–57(2007).
[40]M. A. Pimenta et al, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9, 1276–1291(2007).
[41]Yuyan Shao et al, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem., 20, 7491–7496(2010).
[42]Qiran Cai et al, Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 9, 3059–3067(2017).
[43]Ch. Androulidakis et al, Strained hexagonal boron nitride: Phonon shift and Grüneisen parameter. PhysRevB. 97(2018).
[44] M. Yagmurcukardes et al, Strain mapping in single-layer two-dimensional crystals via Raman activity. PhysRevB. 97(2018).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw