系統識別號 U0026-2309201117534100
論文名稱(中文) 基質剛性梯度下之NIH3T3纖維母細胞攤附與遷移一維動態模擬
論文名稱(英文) One-dimensional Simulation of Spreading and Migration of NIH3T3 Fibroblast Cells on the Substrate with a Stiffness Gradient
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 1
出版年 100
研究生(中文) 吳佩蓉
研究生(英文) Pei-Jung Wu
學號 n16984751
學位類別 碩士
語文別 英文
論文頁數 102頁
口試委員 指導教授-朱銘祥
中文關鍵字 細胞移動  細胞攤附  數學模型  基質剛性梯度 
英文關鍵字 cell migration  cell spreading  mathematical model  substrate stiffness 
中文摘要 細胞遷移的特性在生理上與傷口癒合、白血球免疫反應、甚至於細胞癌化等都有密切的相關性,而細胞剛性則會影響細胞爬行的運動學特性。因此本研究目的為發展NIH3T3纖維母細胞於基質剛性梯度下之細胞攤附與遷移之一維動態模型,並利用生物力學觀點探討細胞在運動中可能的生理機制。
英文摘要 Cell migration plays an important role in the modulation of physiological functions such as wound healing, immunoresponse, and carcinogenesis. A substrate with a stiffness gradient affects the kinematics of cell migration. In this study, a one-dimensional cell spreading and migration model is proposed to investigate the cell motility in the environment of a stiffness gradient by biomechanical analysis.
A one-dimensional cell dynamics model on the substrate with a stiffness gradient is developed in this study, and the physiology is interpreted from system point of view.In the cell spreading model, cell protrusion, focal adhesion formation, and stress fiber formation are integrated to simulate the dynamics from suspension to spreading. In the cell migration model, the movement direction of the modeled cell is determined by polarization, and focal adhesions at the cell rear are degraded. A method for fabricating a substrate with a stiffness gradient is proposed. The parameters obtained from kinematic analysis are substituted into the migration model. Cell dynamics are obtained from simulation, and the G-actin concentration is estimated. The G-actin concentration increases in the early stage of spreading, and then decreases when spreading came to saturate. The simulation results of cell migration shows the dynamics when the cell moved fast, slow, and turned back. The behaviors of cell motility are described by biomechanical analysis, and the molecular properties can be predicted without a biochemical assay.
論文目次 摘要 I
Abstract II
致謝 III
Table of contents IV
List of figures VIII
List of tables XI
Nomenclature XII
Chapter 1 Introduction 1
1.1 Background information 1
1.1.1 Cytoskeleton 1
1.1.2 Cell migration process 3
1.1.3 Actin retrograde flow 5
1.1.4 Categories of stress fibers 6
1.2 Literature review 7
1.2.1 Cell biology of cell migration 7
1.2.2 Mathematical models for cell migration 9
1.2.3 Effect of substrate stiffness on cell motility 10
1.3 The statement of purpose 11
1.4 Structure of the thesis 12
Chapter 2 Materials and Methods 13
2.1 One-dimensional dynamic models of the NIH3T3 cell 13
2.1.1 Definitions of dynamics models 13
2.1.2 Cell spreading model 15
2.1.3 Cell migration model 19
2.2 Cell protrusion model 22
2.2.1 Brownian ratchet model of lamellipodia 22
2.3 Kinetic model of focal adhesions 25
2.3.1 Bell’s model 25
2.3.2 Kong’s microscopic model of focal adhesions 27
2.3.3 Integrin clustering model 29
2.4 Models of stress fibers 31
2.4.1 Two-phase model of lamella 32
2.4.2 Stress fiber distribution described by Hill equation 34
2.5 Estimation of G-actin concentration in the cell 35
2.6 Regulation mechanism of myosin concentration 37
2.7 Numerical simulation 38
2.8 Fabrication and measurement of substrate stiffness gradient 39
2.8.1 Fabrication of substrate with stiffness gradient 39
2.8.2 Measurement of substrate stiffness 40
2.9 Cell culture 41
2.9.1 Medium for NIH3T3 fibroblast cells 41
2.9.2 Subculture for NIH3T3 fibroblast cells 41
2.10 Cell spreading and migration experiments 43
2.10.1 Time-lapse microscopy of cell spreading 43
2.10.2 Time-lapse microscopy of cell migration 43
2.10.3 Immunofluorescence 44
2.10.4 Image process 45
Chapter 3 Results 47
3.1 Measurement of substrate stiffness 47
3.2 Experimental results of cell spreading and migration 48
3.2.1 Experimental results of cell spreading 48
3.2.2 Results of control group1 (null UV) 52
3.2.3 Results of control group 2 (full UV) 56
3.2.4 Results of experimental group (with stiffness gradient) 60
3.2.5 Immunofluorescence 67
3.3 Simulation results of focal adhesions kinetic model 70
3.3.1 Bell’s model 70
3.3.2 Integrin clustering model 72
3.4 Simulation results of actin and stress fibers 74
3.4.1 Brownian ratchet model 74
3.4.2 Hill equation 76
3.4.3 Two-phase flow model 77
3.5 Simulation results of cell spreading model 79
3.6 Simulation results of cell migration 84
Chapter 4 Discussion 90
4.1 Migration ability 90
4.1.1 On control group results 90
4.1.2 On experimental group results 90
4.1.3 Comparison of the three group results 91
4.2 Immunofluorescence results for spreading and migration 91
4.3 Comparisons with existing models 92
4.3.1 With Kong’s model 92
4.3.2 With Dokukina’s migration model 93
4.4 Physiological interpretation 94
4.5 Limitations in experiments 95
4.5.1 Cell division in cell migration experiments 95
4.5.2 Cell number in migration experiments 97
Chapter 5 Conclusion 100
5.1 Conclusion 100
5.2 Future work 100
References 101
參考文獻 [1]Chicurel M., Cell biology: cell migration research is on the move. Science 295, 606–609 (2002)
[2]Alberts B., Bray D., Hopkin D., Johnson A., Lewis J., et al., Essential Cell Biology, Second Edition, Garland Science Publishing (2004)
[3]賴慕賢,張乃忠, 生化學與分子生物學:原理與實用,合記圖書出版社,175-186(2006)
[5]Lodish H., Berk A., Zipursky L., Matsudaira P., Baltimore D., et al. , Molecular Cell Biology, W. H. Freeman and Company(2008)
[6]Geiger B., Bershadsky A., Pankov R., and Yamada K. M., Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793-805(2001).
[7]Giancotti F.G., Ruoslahti, E., Integrin signaling. Science 285: 1028–1032(1999)
[8]Geiger B., Bershadsky A., Pankov R. et al., Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol., 2(11), 793~805(2001)
[9]Geiger B., Bershadsky A., Exploring the neighborhood: Adhesion-coupled cell mechanosensors. Cell 110(2), 139–142( 2002)
[10]Sastry S.K., Burridge K., Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 261, pp. 25–36. (2000)
[11]Pollard T.D., Borisy G.G., Cellular motility driven by assembly and disassembly of actin filaments.Cell 112, 453–465 (2003)
[12]Hill T.L., Kirschner M.W., Bioenergetics and kinetics of microtubule and actin filament assemblydisassembly.Int. Rev. Cytol. 78, 1–125 (1982)
[13]Wegner A., Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976)
[14]Pollard T.D., Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986)
[15]Mogilner A., Mathematics of cell motility: have we got its number? J. Math. Biol. 58:105–134 (2009)
[16]Zhu C., Skalak R., A continuum model of protrusion of pseudopod in leukocytes. Biophys.J. 54, 1115–1137 (1988)
[17]Bell G.I., Models for the specific adhesion of cells to cells.Science 200, 618–627(1978)
[18]Dembo M., Torney D.C., Saxman K., Hammer D.A., The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. London Ser. B 234:55-83(1988)
[19]Schwarz U.S., Erdmann T., and Bischofs I. B., Focal adhesions as mechanosensors: the two-spring model. BioSystems, 83: 225-232 (2006)
[20]Zhu C., Kinetics and mechanics of cell adhesion. J. Biomech. 33:23-33(2000)
[21]Stéphanou A., Mylona E., Chaplain M., Tracqui P., A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol, 253:701–716(2008)
[22]Dokukina I.V., Gracheva M.E., A Model of Fibroblast Motility on Substrates with Different Rigidities. Biophys.J. 98, 2794-2803(2010)
[23]Lo C.M., Wang H.B., Dembo M.,Wang, Y.L., Cell movement is guided by the rigidity of the substrate, Biophys. J. 79, 144–152(2000)
[24]Ponti A., Machacek M., Gupton SL, Waterman-Storer C.M.,Danuser G., Two distinct actin networks drive the protrusion of migrating cells, Science, 305:1782-1786( 2004)
[25]Ridley A.J., Schwartz M.A., Burridge K., Parsons J.T., Firtel R.A., et al., Cell Migration: Integrating Signals from Front to Back. Science 302, 1704–1709(2003)
[26]Kong D., Ji B., Dai L., Stabilizing to disruptive transition of focal adhesion response to mechanical forces , Journal of Biomechanics 43, 2524(2010)
[27]Peskin C.S., Odell G.M., Oster G.F., Cellular motions andthermal fluctuations: the Brownian ratchet, Biophys J. 65,316-324 (1993)
[28]Alt W., & Dembo M., Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–228 (1999)
[29]Hotulainen P., Lappalainen P., Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol.173,383–394(2006)
[30]Gillespie D., Exact stochastic simulation of coupled chemical reactions, J Phys. Chem. 81, 2340-2361(1977)
[31]Ohan M.P., Weadock K.S., Dunn M.G., Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J Biomed Mater Res 60(3), 384–91. (2002)
  • 同意授權校內瀏覽/列印電子全文服務,於2014-02-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-02-06起公開。

  • 如您有疑問,請聯絡圖書館