進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308202023310700
論文名稱(中文) 風機葉片設計與空氣軸承系統模擬之研究
論文名稱(英文) Study of the blade design of a wind turbine and the system simulation of an aerostatic bearing
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 李侑橙
研究生(英文) Yu-Cheng Li
學號 N96071392
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 指導教授-吳毓庭
口試委員-陳文立
口試委員-何明字
口試委員-吳志勇
口試委員-闕志哲
中文關鍵字 風力發電機葉片設計  機械效率  轉子功率  氣靜壓軸承設計  控制系統模擬 
英文關鍵字 design of wind turbine blades  mechanical efficiency  rotor power  aerostatic bearing design  control system simulation 
學科別分類
中文摘要 本論文主要針對兩個研究主題進行探討,其分別為風機葉片設計及空氣軸承系統模擬。第一部分是探討在缺乏目標風機之完整原始參數的情況下,為了要獲得與目標風機之性能相近的數據,以建立風機葉片的設計程序。由於所有風機皆是各個製造商的商業機密,我們只能針對產品型錄、官方網站、文獻資料和研究報告蒐集相關的資料。資料中與設計參數相關的資訊有六項,分別是葉片直徑、葉片數量、葉片之最大翼弦長及位置、功率曲線、推力係數曲線和轉速與風速的關係。由既有資料以建立設計程序,並藉此程序求得與目標風機之性能相近的葉片外型參數(翼弦長和扭轉角)。當設計出擬合葉片的外型時,將外型參數代入葉片元素動量理論之擬合求解以計算擬合葉片外型的性能數據(推力、軸轉矩和功率)。根據求解獲得的性能數據計算擬合葉片的機械效率,並將此結果與文獻相比之可知此機械效率為合理值,這也驗證本文所提出風機葉片的設計程序的可靠性。
第二部分是以圓形平面的外型來設計空氣靜壓軸承,並在Simulink軟體上提出四種模擬流程,四種流程之間差別在於數學模型中有或沒有考慮運動方程式和以氣膜壓力或以間隙高度為控制參數,由於MATLAB/Simulink採用圖形使用者介面,具有方便修改參數的特性,基於軸承性能理論發展出簡單快速的模擬程序,此程序提供使用者設定不同的軸承設計參數,建立分段的參數信號。觀察系統趨勢隨著信號改變而變化,由此得知軸承的物理特性(間隙高度、氣膜壓力、質量流率、閥門面積等)。利用PID控制器分別針對以間隙高度或以氣膜壓力進行閥門面積的控制,此程序可以用於軸承在設計開發的過程中,快速修改軸承參數並分析其性能。比較以氣膜壓力或以間隙高度為控制參數的數學模型可得以間隙到度為控制參數是可行的。由控制氣模壓力之結果顯示經由PID控制器對氣膜壓力進行控制並不可行,因為當壓力固定時,間隙高度會隨著閥門面積的變大而升高,存在無限多組解。經由PID控制器對間隙高度進行控制之模擬結果顯示,當軸承承受5.5公斤力的負載重量變化時,系統只需2.3秒的時間就能夠恢復穩定,而此結果表示對間隙高度進行控制是可行的。比較數學模型中有或沒有考慮運動方程式的分析結果可得不含運動方程式之模型是不可行的。原因是系統中需要被計算的參數有四個,分別為閥門面積、氣膜壓力、間隙高度和負載重量。包含運動方程式之模型有四條獨立方程式,所以此模型是能夠求解的。不含運動方程式之模型只有三條獨立方程式,因為缺少一個限制條件,故此模型並不可行。
英文摘要 This study focuses on two research topics, which are blade design of wind turbine blades and control system simulation of aerostatic bearing. The first part is to establish a blade design fitting process to obtain data similar to the performance of the target wind turbine in the condition of absence of the complete data. In this process, the geometry parameters of the blade similar to the performance of the target wind turbine are obtained. Comparing this result with the literature shows that mechanical efficiency is a reasonable value, which also verifies the reliability of the blade design fitting program proposed. The second part is that we design the aerostatic bearing with a circular flat shape and propose simulation processes. We have developed a simple and fast simulation program based on the theory of bearing performance. This program provides the design parameters of the bearing set by the user and establishes segmented parameter signals. The observation system changes with the trend of signal change, to know the physical characteristics of the bearing.
論文目次 摘要 I
Extended Abstract III
誌謝 VII
目 錄 VIII
表 目 錄 X
圖 目 錄 XI
符號表 XIV
第一部份 風機葉片設計研究 1
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
第二章 葉片元素動量理論 7
2-1 動量理論 7
2-2 尾流旋轉效應 11
2-3 葉片元素理論 12
第三章 程序建立與擬合結果 15
第四章 結論 31
第二部份 空氣軸承系統模擬研究 33
第一章 緒論 33
1-1 前言 33
1-2 文獻回顧 34
第 二 章 空氣軸承介紹 36
2-1 空氣軸承之優缺點 36
2-1-1 空氣軸承之優點 36
2-1-2 空氣軸承之缺點 37
2-2 空氣軸承的種類與工作原理 38
2-3 節流器之種類與工作原理 39
2-3-1 節流器之種類 39
2-3-2 節流器之工作原理 41
2-3-3 限制間隙高度之方法 42
第 三 章 靜壓型空氣軸承之性能分析 43
3-1 間隙平面間之性能分析 43
3-1-1 間隙平面間之速度分佈推導 43
3-1-2 間隙平面間之質量流率推導 45
3-2 圓形孔口節流器之性能分析 46
3-2-1 孔口節流器之壓力關係式推導 46
3-2-2 孔口節流器之質量流率推導 48
第 四 章 數學模型之建立與分析結果 51
4-1 數學模型 51
4-1-1 控制間隙高度且含運動方程式之程序 51
4-1-2 控制氣膜壓力且含運動方程式之程序 53
4-1-3 控制間隙高度但不含運動方程式之程序 54
4-1-4 控制氣膜壓力但不含運動方程式之程序 55
4-2 系統穩定性分析 56
4-2-1 控制間隙高度之結果 56
4-2-2 控制氣膜壓力之結果 58
4-3 收斂時間分析 61
4-4 轉移函數之分析 63
4-4-1 包含運動方程式之轉移函數結果 64
4-4-2 不含運動方程式之轉移函數結果 67
第 五 章 結論 70
參考文獻 72
參考文獻 1. Ohlenforst, K., S. Sawyer, A. Dutton, B. Backwell, R. Fiestas, J. Lee, L. Qiao, F. Zhao, and N. Balachandran, Global wind report 2018. Global Wind Energy Council, Brussels, Belgium, Tech. Rep, 2019.
2. Richardson, R. and G.M. McNerney, Wind energy systems. Proceedings of the IEEE, 1993. 81(3): p. 378-389.
3. Bansal, R., T. Bhatti, and D. Kothari, On some of the design aspects of wind energy conversion systems. Energy conversion and management, 2002. 43(16): p. 2175-2187.
4. Veers, P.S., T.D. Ashwill, H.J. Sutherland, D.L. Laird, D.W. Lobitz, D.A. Griffin, J.F. Mandell, W.D. Musial, K. Jackson, and M. Zuteck, Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2003. 6(3): p. 245-259.
5. Dominy, R., P. Lunt, A. Bickerdyke, and J. Dominy, Self-starting capability of a Darrieus turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007. 221(1): p. 111-120.
6. Schubel, P.J. and R.J. Crossley, Wind turbine blade design. Energies, 2012. 5(9): p. 3425-3449.
7. Maalawi, K.Y. and H.M. Negm, Optimal frequency design of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics, 2002. 90(8): p. 961-986.
8. Maalawi, K. and M. Badr, A practical approach for selecting optimum wind rotors. Renewable energy, 2003. 28(5): p. 803-822.
9. Jackson, K., M.v. Zuteck, C. Van Dam, K. Standish, and D. Berry, Innovative design approaches for large wind turbine blades. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2005. 8(2): p. 141-171.
10. Jureczko, M., M. Pawlak, and A. Mężyk, Optimisation of wind turbine blades. Journal of materials processing technology, 2005. 167(2-3): p. 463-471.
11. Lanzafame, R. and M. Messina, Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory. Renewable energy. Vol. 32. 2007. 2291-2305.
12. Liu, X., L. Wang, and X. Tang, Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renewable Energy, 2013. 57: p. 111-119.
13. Singh, R.K. and M.R. Ahmed, Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renewable Energy, 2013. 50: p. 812-819.
14. Fuglsang, P. and H.A. Madsen, Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 1999. 80(1-2): p. 191-206.
15. Gorban’, A.N., A.M. Gorlov, and V.M. Silantyev, Limits of the Turbine Efficiency for Free Fluid Flow. Journal of Energy Resources Technology, 2001. 123(4): p. 311-317.
16. Duquette , M.M. and K.D. Visser, Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines. Journal of Solar Energy Engineering, 2003. 125(4): p. 425-432.
17. Chattot, J.-J., Optimization of Wind Turbines Using Helicoidal Vortex Model. Journal of Solar Energy Engineering, 2003. 125(4): p. 418-424.
18. Stol, K.A., W. Zhao, and A.D. Wright, Individual blade pitch control for the controls advanced research turbine (CART). 2006.
19. Yurdusev, M., R. Ata, and N. Çetin, Assessment of optimum tip speed ratio in wind turbines using artificial neural networks. Energy, 2006. 31(12): p. 2153-2161.
20. Barlas, T.K. and G.A. van Kuik, Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 2010. 46(1): p. 1-27.
21. Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. 2010: John Wiley & Sons.
22. Wu, Y.-T. and F. Porté-Agel, Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-layer meteorology, 2011. 138(3): p. 345-366.
23. Sector, E., Siemens 6.0 MW Offshore Wind Turbine. 2012, Technical Report: Energy, Siemens.
24. Nader, J. and P. Fuglsang, Characteristics of The Wind Turbine Blades Industry. 2016, Technical Report.
25. Beltau, A., Calculation: 6MW alternatief: Kavel IV. alternatief: Kavel IV. Siemens SWT-6.0-154-6.000. Project: 715082. Pondera Consult B.V. Published by the Commission for the Environmental Impact Assessment of the Netherlands. 2018.
26. Schmitz, S., Aerodynamics of Wind Turbines: A Physical Basis for Analysis and Design. 2019: John Wiley & Sons.
27. Sudhamshu, A., M.C. Pandey, N. Sunil, N. Satish, V. Mugundhan, and R.K. Velamati, Numerical study of effect of pitch angle on performance characteristics of a HAWT. Engineering Science and Technology, an International Journal, 2016. 19(1): p. 632-641.
28. Wu, Y.-T. and F. Porté-Agel, Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm. Renewable Energy, 2015. 75: p. 945-955.
29. Jacobs, E. and N. Sherman, Airfoil section characteristics as affected by variations of the Reynolds number. 1937. NACA Report. 586.
30. Hansen, K.S., R.J. Barthelmie, L.E. Jensen, and A. Sommer, The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy, 2012. 15(1): p. 183-196.
31. Hirn, G., Sur les principaux phénomènes qui présentent les frottements médiats. Bull. soc. ind. Mulhouse, 1854. 26: p. 188-277.
32. Tower, B., First report on friction experiments. Proceedings of the institution of mechanical engineers, 1883. 34(1): p. 632-659.
33. Reynolds, O., IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical transactions of the Royal Society of London, 1886(177): p. 157-234.
34. Kingsbury, A., Experiments with an air‐lubricated journal. Journal of the American Society for Naval Engineers, 1897. 9(2): p. 267-292.
35. Harrison, W., The hydrodynamical theory of lubrication with special reference to air as a lubricant. Trans. Cambridge Philos. Soc., 1913. 22: p. 39-54.
36. Fuller, D.D., International Symposium on Gas-Lubricated Bearings,(1st) Held at the Franklin Institute. 1959, Office of naval research Arlington VA.
37. Gao, Q., W. Chen, L. Lu, D. Huo, and K. Cheng, Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribology International, 2019. 135: p. 1-17.
38. Stout, K. and S. Barrans, The design of aerostatic bearings for application to nanometre resolution manufacturing machine systems. Tribology International, 2000. 33(12): p. 803-809.
39. Chen, M.-F. and Y.-T. Lin, Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method. Tribology International, 2002. 35(5): p. 329-338.
40. Lo, C.-Y., C.-C. Wang, and Y.-H. Lee, Performance analysis of high-speed spindle aerostatic bearings. Tribology International, 2005. 38(1): p. 5-14.
41. Al-Bender, F., On the modelling of the dynamic characteristics of aerostatic bearing films: From stability analysis to active compensation. Precision Engineering, 2009. 33(2): p. 117-126.
42. Eleshaky, M.E., CFD investigation of pressure depressions in aerostatic circular thrust bearings. Tribology International, 2009. 42(7): p. 1108-1117.
43. Neves, M., V. Schwarz, and G. Menon, Discharge coefficient influence on the performance of aerostatic journal bearings. Tribology International, 2010. 43(4): p. 746-751.
44. Powell, J.W., Design of aerostatic bearings. 1970, Brighton : Machinery.
45. Hamrock, B.J., S.R. Schmid, and B.O. Jacobson, Fundamentals of fluid film lubrication. 1994: CRC press.
46. 十合晉一, 氣體軸承從設計到製造. 1985: 復漢出版社.
47. Air Bearing Application and Design Guide. 2003: New Way Precision-Porous Media Air Bearing Solutions. p. 1-63.
48. Rowe, W.B., Hydrostatic, aerostatic and hybrid bearing design. 2012: Elsevier.
49. Sutton, G.P. and O. Biblarz, Rocket propulsion elements. 2016: John Wiley & Sons.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw