進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308202021481700
論文名稱(中文) 擬鹵素置換增進α相甲脒碘化鉛鈣鈦礦太陽能電池元件穩定性
論文名稱(英文) The stabilization of α-phase Formamidinium lead triiodide perovskite solar cell with thiocyanate substitution
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 張劭彤
研究生(英文) Shao-Tung Chang
學號 L76074093
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-陳昭宇
口試委員-許進恭
口試委員-郭宗枋
中文關鍵字 α相鈣鈦礦  添加劑  擬鹵素  硫氰酸  穩定性  鈣鈦礦太陽能電池 
英文關鍵字 pseudo-halide  thiocyanate  stability  perovskite solar cells  additive 
學科別分類
中文摘要 有機無機混成鈣鈦礦太陽能電池元件發展至今,能量轉換效率已可達25%以上,但在商業化上元件穩定性仍是最大問題,因鈣鈦礦在大氣環境下極容易與水反應而分解。本研究使用能帶間隙為1.47 eV,吸收邊界理論上可達850 nm的FAPbI3鈣鈦礦作為太陽能電池元件主動層材料,因為其相較MAPbI3和CsPbI3等,具有最接近S-Q理論之理想能隙及最寬的光吸收範圍。為解決其容易相轉變成不穩定的鈣鈦礦相(δ相FAPbI3),本研究添加MACl與FASCN作為穩定劑,其中MACl為近年來FAPbI3鈣鈦礦普遍添加的穩定劑,本研究中比較添加MACl與否兩種情況下,FASCN在鈣鈦礦中皆能增加其穩定性而不對元件轉換效率有負面影響。
先前文獻對於添加MACl於FAPbI3鈣鈦礦所造成的礦相影響,以及結晶過程等機制已有清楚的研究,但對於在如台灣等地較溼熱天氣,添加後的穩定性仍然無甚顯著影響,本研究摻雜入微量FASCN發現在大氣環境下能有效抑制α相FAPbI3鈣鈦礦轉變為δ相FAPbI3鈣鈦礦的過程,其現象由肉眼清晰可見,在對照組無添加MACl者因大氣環境轉變為透明黃色膜時,摻雜3%FASCN者仍能保持如剛退火完成時漆黑鏡面。
研究中加入的MA、Cl、SCN等額外離子,均在SIMS與XPS能做清楚的分析,其中MACl在退火過程中未完全逸散,部分留存於膜中,對於吸收邊界也產生些微藍移,在有添加SCN組別時,會增進Cl的留存,其現象可從SIMS與XPS分析明顯觀察出。SCN則皆在薄膜底部才有些許留存,而Cl存在時更減少薄膜深處的SCN含量。
英文摘要 Currently, the organic-inorganic hybrid perovskite solar cells (PSCs) have achieved high efficiency over 25%. However, the instability of perovskite is still a concerned for practical application of PSCs under ambient condition. Although formamidinium lead triiodide (FAPbI3) perovskite exhibits ideal bandgap of 1.47 eV which is close to the Shockley-Queisser limit, the perovskite phase of FAPbI3 (α-phase FAPbI3) easily converts into non-perovskite phase (δ-phase FAPbI3) at room temperature whose optoelectronic properties are not suitable for solar cells. The purpose of this study is to introduce two additives, methylammonium chloride (MACl) and formamidinium thiocyanate (FASCN), in FAPbI3 perovskite to stabilize the α-phase FAPbI3 in virtue of composition engineering. Addition of MACl can relax strain of FAPbI3 perovskite lattice structure, while pseudo-halide (such as SCN) can stabilize the perovskite lattice structure as well. The results indicate that the halide of Cl and pseudo-halide of SCN from the additive show competitive relationship in the resultant perovskite film and different mechanism to improve the stability of FAPbI3 perovskite.
論文目次 摘要 ii
致謝 ix
目錄 x
表目錄 xiii
圖目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池發展 1
1.2.1 第一代太陽能電池 2
1.2.2 第二代太陽能電池 3
1.2.3 第三代太陽能電池 3
1.2.4 鈣鈦礦太陽能電池 4
1.3 太陽能電池基本原理 5
1.3.1 太陽光譜圖與空氣質量 5
1.3.2 Shockley-Queisser理論 6
1.3.3 太陽能電池元件量測 8
1.4 研究動機 11
第二章 文獻回顧 12
2.1 有機無機混成鈣鈦礦發展 12
2.2 甲脒碘化鉛 15
2.3 取代物/添加劑 18
2.3.1 有機陽離子與鹵素陰離子化合物 19
2.3.2 擬鹵素陰離子 (X位置) 23
第三章 實驗方法與儀器分析 30
3.1 實驗儀器與藥品 30
3.2 實驗流程圖 31
3.3 鈣鈦礦太陽能電池元件製作 31
3.4 樣品特性分析 32
3.4.1 I-V特性曲線與量子轉換效率量測 32
3.4.2 吸收光譜量測 (UV-vis spectrum) 33
3.4.3 光致螢光光譜量測 (PL spectrum) 33
3.4.4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 34
3.4.5 X光繞射儀 (X-ray Diffraction, XRD) 34
3.4.6 X射線光電子能譜(X-ray photoelectron Spectroscopy, XPS) 35
3.4.7 二次離子質譜儀(Secondary Ion Mass Spectroscopy, SIMS) 35
3.4.8 原子力顯微鏡(Atomic Force Microscope, AFM) 36
3.4.9 表面電位顯微鏡(Kelvin Probe Force Microscope, KPFM)與表面電位(Kelvin Probe, KP) 37
第四章 結果與討論 39
4.1 FAPbI3鈣鈦礦添加額外PbI2元件分析 39
4.1.1 添加過量PbI2對於FAPbI3鈣鈦礦元件穩定性的影響 39
4.1.2 添加過量PbI2對於FAPbI3鈣鈦礦元件表現的影響 40
4.2 加入MACl與否,與加入不同比例FASCN的鈣鈦礦比較 41
4.2.1 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦表面形貌SEM分析 41
4.2.2 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦XRD分析 42
4.2.3 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦光致發光與吸收光譜分析 43
4.2.4 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦元件分析 45
4.2.5 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦薄膜穩定性分析 51
4.2.6 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦SIMS分析 54
4.2.7 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦XPS分析 56
4.2.8 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦Kelvin Probe分析 59
4.2.9 加入MACl與否,與不同SCN摻雜比例的FAPbI3鈣鈦礦AFM與KPFM分析 62
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 64
參考文獻 66

表目錄
表3- 1:實驗儀器列表 30
表3- 2:實驗藥品列表 30

表4- 1:不同額外PbI2添加之元件表現 40
表4- 2:不同SCN摻雜於FAPbI3元件表現 46
表4- 3:添加MACl與不同比例FASCN之元件表現 51
表4- 4:不同添加物比例之功函數與價帶位置 61


圖目錄
圖1- 1:光伏化學電池示意圖 2
圖1- 2:矽晶太陽能電池結構示意圖 2
圖1- 3:不同種類太陽能電池效率發展比較圖 5
圖1- 4:太陽光經不同路徑照射至地表示意圖 6
圖1- 5:Shockley-Queisser理論計算能隙與效率關係 7
圖1- 6:太陽能電池元件等效電路圖 8
圖1- 7:照光與否之I-V曲線圖 9
圖1- 8:I-V曲線與功率對照圖 10
圖1- 9:(a)串聯電阻對I-V曲線影響 (b)並聯電阻對I-V曲線影響 11

圖2- 1:(a)鈣鈦礦吸附於二氧化鈦示意圖 (b)MAPbBr3 (實線)和MAPbI3 (虛線)鈣鈦礦的J-V曲線 12
圖2- 2:固態太陽能電池(a)元件外貌 (b)元件結構剖面示意圖 (c)SEM截面圖 (d)FTO,TiO2及鈣鈦礦介面SEM截面放大圖 13
圖2- 3:固態太陽能電池(a)J-V圖與其光伏特性 (b)IPCE響應圖 13
圖2- 4:鈣鈦礦形成機制 14
圖2- 5:(a) Solvent engineering製程示意圖 (b)利用Solvent engineering製程所製作的元件J-V圖 14
圖2- 6:不同A位置陽離子與鈣鈦礦容忍因子關係圖 15
圖2- 7:FAPbI3鈣鈦礦退火過程中相轉變示意圖 16
圖2- 8:元件J-V曲線與IPCE圖 16
圖2- 9:(a)添加不同比例MDACl2之吸收與放光光譜(b)能帶模擬計算圖(i) FAPbI3(ii) FA0.926(VFA)0.037MDA0.037PbI3(iii) FA0.963MDA0.037PbI3(Cli)0.037 17
圖2- 10:(a) 添加不同比例MDACl2之時間解析光激螢光衰減圖(b)XPS Cl 2p軌域之Binding Energy(c)TOF-SIMS 之Cl空間分布分析(i)以MDACl2、MACl為穩定劑(ii)以MAPbBr3、MACl為穩定劑 18
圖2- 11:(a)不同鹵素比例鈣鈦礦元件圖 (b)不同溴摻雜比例的鈣鈦礦吸收圖譜 20
圖2- 12:不同摻雜比例的MAPbIxCl3-x時間解析光激螢光衰減圖 20
圖2- 13:不同摻雜比例的MAPbIxCl3-x鈣鈦礦J-V圖 21
圖2- 14:在多孔TiO2上的FAPbI3相轉變機制(藍色半球表示此位置一半被FA佔據) 22
圖2- 15:(a) Cl與MA在α相的FAPbI3鈣鈦礦結構生成能模擬計算比較,(b)為有無MA情況下,Cl在α相的FAPbI3鈣鈦礦結構中增進I的p軌域定域化的比較,(c)為含有MA與否對於整體體積與立方八面體結構的影響 23
圖2- 16:(a)不同時間下MAPbI3鈣鈦礦反射光譜圖 (b)不同時間下MAPb(SCN)2I鈣鈦礦反射光譜圖 24
圖2- 17:MAPbI3與MAPbI3-x(SCN)x鈣鈦礦的XRD圖 25
圖2- 18:(a) MAPbI3 (b) MAPbI3-x(SCN)x鈣鈦礦表面形貌 25
圖2- 19:MAPbI3與MAPbI3-x(SCN)x鈣鈦礦(a)元件J-V圖 (b)元件長效穩定性 26
圖2- 20:MAPbI3-x(SCN)x鈣鈦礦XPS圖譜 26
圖2- 21:三元陽離子摻雜SCN 鈣鈦礦J-V圖 (B為無熱退火三元陽離子鈣鈦礦、C為有熱退火三元陽離子鈣鈦礦、D為無熱退火摻雜SCN 鈣鈦礦、E為有熱退火摻雜SCN 鈣鈦礦) 27
圖2- 22:利用氣相沉積法製備摻雜Pb(SCN)2鈣鈦礦(a)拉曼圖譜 (b)FTIR圖譜 27
圖2- 23:利用旋塗法製備摻雜Pb(SCN)2鈣鈦礦(a) FTIR圖譜 (b)SIMS縱深圖 28
圖2- 24:摻雜MASCN鈣鈦礦時間解析光激螢光衰減圖 29
圖2- 25:FAPbI3鈣鈦礦摻雜30% NH4SCN。(a) 無添加NH4SCN的FAPbI3薄膜(b)添加30% NH4SCN 的FAPbI3薄膜 (c) 無添加NH4SCN與(d)添加30% NH4SCN的FAPbI3薄膜在85%濕度情況下存放。 29

圖3- 1:元件製程流程圖 31
圖3- 2:鈣鈦礦太陽能電池元件結構圖 32
圖3- 3:探針與樣品能帶示意圖(a)探針與樣品距離較遠時 (b)探針與樣品足夠接近時 (c)外加電壓使CPD消失時 37

圖4- 1:不同額外PbI2添加對於FAPbI3鈣鈦礦元件穩定性影響的比較 39
圖4- 2:不同額外PbI2添加之元件J-V圖 40
圖4- 3:FAPbI3鈣鈦礦(a)無添加劑 (b)摻雜3%SCN (c)添加35%MACl (d)添加35%MACl與3%SCN 41
圖4- 4:不同FASCN摻雜於FAPbI3鈣鈦礦中的XRD圖 42
圖4- 5:不同FASCN摻雜於添加MACl的FAPbI3鈣鈦礦中的XRD圖 43
圖4- 6:光致發光與吸收光譜分析(a)無添加MACl(b)添加35%MACl 44
圖4- 7:不同SCN摻雜於FAPbI3元件(a)J-V圖 (b)元件穩定性 46
圖4- 8:MA2Pb(SCN)2I2之結構 47
圖4- 9:添加MACl與不同比例FASCN之元件表現(a) J-V圖(b)元件穩定性(未封裝,置於濕度30±5%防潮箱中) 50
圖4- 10:無添加過量PbI2時鈣鈦礦穩定性分析(無封裝,濕度70±5%,1小時)(a)薄膜外觀(b)XRD圖譜(c)吸收圖譜 52
圖4- 11:不同添加物組合之FAPbI3薄膜吸收變化圖 53
圖4- 12:不同添加物比例的SIMS縱深分析圖 56
圖4- 13:(a)C 1s之Binding Energy(b) N 1s之Binding Energy 57
圖4- 14:(a)Pb 4f7/2與Pb 4f5/2之Binding Energy(b) I 3d5/2與I 3d7/2之Binding Energy 58
圖4- 15:(a)Cl 2p3/2與Cl 2p2/1之Binding Energy(b)S 2p之Binding Energy 58
圖4- 16:不同添加物比例的XPS元素含量圖 59
圖4- 17:理論鈣鈦礦能帶圖 60
圖4- 18:理論計算能帶分布(a)MA2PbI4 (b)MA2PbI2(SCN)2 60
圖4- 19:Kelvin Probe量測之接觸電位差 61
圖4- 20:AFM表面形貌分析(3μm×3μm)(a)pF0(c)pF3(e)FC0(g)FC3與 63
參考文獻 [1] R. A. García, S. Turck-Chièze, S. J. Jiménez-Reyes, J. Ballot, P. L. Pallé, A. Eff-Darwich, S. Mathur, and J. Provost, "Tracking Solar Gravity Modes: The Dynamics of the Solar Core," Science, 2007, 316, 5831, 1591.
[2] A. Einstein, "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)]," Annalen der Physik, 2005, 14, S1, 164-181.
[3] "The Nobel Prize in Physics 1921." https://www.nobelprize.org/prizes/physics/1921/summary/ (accessed 2020).
[4] A. E. Becquerel, "Mémoire Sur Les Effets électriques Produits Sous l'influence des Rayons Solaires," Comptes Rendus de L’Academie des Sciences, 1839, 9, 561-567.
[5] A. E. Becquerel, "Mémoire Sur Les Effets électriques Produits Sous l'influence des Rayons Solaires," Comptes Rendus de L’Academie des Sciences, 1839, 9, 561-567.
[6] NREL, "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed 2020).
[7] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, 2014, 7, 3, 982-988.
[8] S. Aharon, A. Dymshits, A. Rotem, and L. Etgar, "Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells," Journal of Materials Chemistry A, 2015, 3, 17, 9171-9178.
[9] G. R. Energy, "Graphing Intensity and Energy." http://www.greenrhinoenergy.com/solar/radiation/geometry.php (accessed 2020).
[10] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, 1961, 32, 3, 510-519.
[11] R. Hsu, C. T. Liu, W. Y. Chen, H.-I. Hsieh, and H. L. Wang, "A Reinforcement Learning-Based Maximum Power Point Tracking Method for Photovoltaic Array," International Journal of Photoenergy, 2015, 2015.
[12] P. Mao, Y. Wei, H. Li, and J. Wang, "Junction diodes in organic solar cells," Nano Energy, 2017, 41, 717-730.
[13] B. Schweber, "Solar cells and power, Part 2 – power extraction." POWER ELECTRIC TiPS. https://www.powerelectronictips.com/solar-cells-power-part-2-power-extraction/ (accessed 2020).
[14] G. Instruments, "DSSC: Dye Sensitized Solar Cells," https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/.
[15] G. Li-Ke, T. Yan-Lin, and D. Xin-Feng, "Theoretical study on photoelectric properties of FAPbI3 doped with Ge," Materials Research Express, 2020.
[16] E. Tai, R. Wang, Y. Chen, and G. Xu, "A Water-Stable Organic-Inorganic Hybrid Perovskite for Solar Cells by Inorganic Passivation," Crystals, 2019, 9, 83.
[17] A. Kojima, K. Teshima, YasuoShirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, 2009, 131, 17, 6050-6051.
[18] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, 2012, 2, 591.
[19] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells," Nature Materials, 2014, 13, 897.
[20] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. Zakeeruddin, J.-P. Correa-Baena, W. Tress, A. Abate, A. Hagfeldt, and M. Graetzel, "Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance," Science (New York, N.Y.), 2016, 354.
[21] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, 2015, 348, 6240, 1234.
[22] H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, and S. I. Seok, "Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide," Science, 2019, 366, 6466, 749.
[23] M. I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, and E. H. Sargent, "Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air," Nature Energy, 2018, 3, 8, 648-654.
[24] X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu, and S. Priya, "Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation," ACS Energy Letters, 2016, 1, 5, 1014-1020.
[25] E. Mosconi, E. Ronca, and F. De Angelis, "First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine," The Journal of Physical Chemistry Letters, 2014, 5, 15, 2619-2625.
[26] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells," Science, 2016, 351, 6269, 151.
[27] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, "Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells," The Journal of Physical Chemistry Letters, 2014, 5, 3, 429-433.
[28] E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, "High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite," The Journal of Physical Chemistry Letters, 2013, 4, 6, 897-902.
[29] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, "Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells," The Journal of Physical Chemistry Letters, 2014, 5, 10, 1628-1635.
[30] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, and T. Bein, "Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells," Advanced Energy Materials, 2014, 4, 14, 1400355.
[31] Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N. P. Padture, and G. Cui, "Additive-Modulated Evolution of HC(NH2)2PbI3 Black Polymorph for Mesoscopic Perovskite Solar Cells," Chemistry of Materials, 2015, 27, 20, 7149-7155.
[32] C. Mu, J. Pan, S. Feng, Q. Li, and D. Xu, "Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbI3−xClx) for Planar Heterojunction Perovskite Solar Cells," Advanced Energy Materials, 2017, 7, 6, 1601297.
[33] M. Kim, G. Kim, T. K. Lee, I. Choi, H. Choi, Y. Jo, Y. Yoon, J. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, and D. Kim, "Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells," Joule, 2019, 3.
[34] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, "Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells," Nano Letters, 2014, 14, 5, 2584-2590.
[35] Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, "Pseudohalide‐Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)2I Thin Films," Angewandte Chemie International Edition, 2015, 54, 26, 7617-7620.
[36] Y. Chen, B. Li, W. Huang, D. Gao, and Z. Liang, "Efficient and Reproducible CH3NH3PbI3−x(SCN)x Perovskite Based Planar Solar Cells," Chemical Communications, 2015, 51, 60, 11997-11999.
[37] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, and F. Yan, "Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Irrespective of the Humidity," Nature Communications, 2016, 7, 11105.
[38] Y. Sun, J. Peng, Y. Chen, Y. Yao, and Z. Liang, "Triple-Cation Mixed-Halide Perovskites: Towards Efficient, Annealing-Free and Air-Stable Solar Cells Enabled by Pb(SCN)2 Additive," Scientific Reports, 2017, 7, 46193.
[39] Y.-H. Chiang, H.-M. Cheng, M.-H. Li, T.-F. Guo, and P. Chen, "Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells," ChemSusChem, 2016, 9, 18, 2620-2627.
[40] Y.-H. Chiang, M.-H. Li, H.-M. Cheng, P.-S. Shen, and P. Chen, "Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability," ACS Applied Materials & Interfaces, 2017, 9, 3, 2403-2409.
[41] Q. Han, Y. Bai, J. Liu, K.-z. Du, T. Li, D. Ji, Y. Zhou, C. Cao, D. Shin, J. Ding, A. D. Franklin, J. T. Glass, J. Hu, M. J. Therien, J. Liu, and D. B. Mitzi, "Additive Engineering for High-Performance Room-Temperature-Processed Perovskite Absorbers with Micron-Size Grains and Microsecond-Range Carrier Lifetimes," Energy & Environmental Science, 2017, 10, 11, 2365-2371.
[42] S. Yang, W. Liu, L. Zuo, X. Zhang, T. Ye, J. Chen, C.-Z. Li, G. Wu, and H. Chen, "Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process," Journal of Materials Chemistry A, 2016, 4, 24, 9430-9436.
[43] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin Probe Force Microscopy and its Application," Surface Science Reports, 2011, 66, 1, 1-27.
[44] F. Liu, Q. Dong, M. K. Wong, A. B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W. K. Chan, J. Wang, A. M. C. Ng, C. Liao, H. Li, K. Shih, C. Wei, H. Su, and J. Dai, "Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance?," Advanced Energy Materials, 2016, 6, 7, 1502206.
[45] M. Daub and H. Hillebrecht, "Synthesis, Single-Crystal Structure and Characterization of (CH3NH3)2Pb(SCN)2I2," Angewandte Chemie International Edition, 2015, 54, 38, 11016-11017.
[46] G. Tang, C. Yang, A. Stroppa, D. Fang, and J. Hong, "Revealing the Role of Thiocyanate Anion in Layered Hybrid Halide Perovskite (CH3NH3)2Pb(SCN)2I2," The Journal of Chemical Physics, 2017, 146, 22, 224702.
[47] H. S. Jung and N.-G. Park, "Perovskite Solar Cells: From Materials to Devices," Small, 2015, 11, 1, 10-25.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw