進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201917514200
論文名稱(中文) 以影像為基礎之腕關節型機器人拍擊系統
論文名稱(英文) Vision-Based Paddle Juggling System with Carpal Wrist Robot
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 蔡學怡
研究生(英文) Hsueh-Yi Tsai
學號 N96051025
學位類別 碩士
語文別 中文
論文頁數 234頁
口試委員 指導教授-何明字
口試委員-周榮華
口試委員-侯廷偉
中文關鍵字 拍擊耍弄  腕關節型機器人  視覺伺服系統  擴展卡門濾波器 
英文關鍵字 paddle juggling  carpal wrist robot  visual servo control  extended Kalman filter 
學科別分類
中文摘要 本論文旨在結合腕關節型機器人與立體視覺系統,建構一個以影像為基礎的拍擊系統。選用腕關節型機器人的原因在於它的自由度與構造相似於人類的手腕,運動上有高度的靈巧性,由於對稱且並聯式的架構,使其具有較高的負載承受能力。立體影像視覺系統中,利用兩個影像感測器模擬人類雙眼,依據拋體的色彩資訊進行目標物擷取,利用擴展卡門濾波器(extended Kalman filter)針對拋體的位置與速度進行估測,並利用質點拋體運動學對球體落點與速度進行預測,以供機器人決定拍擊球體的時機、位置、速度與姿態。在實作上,本系統利用以場效可程式邏輯閘陣列(field-programmable gate array, FPGA)為基礎之開發板做為影像處理核心,並使用硬體描述語言Verilog撰寫影像處理演算法,以數位訊號處理器做為控制核心並使用C語言撰寫擴展卡門濾波器、馬達控制器等演算法。最後,影像視覺系統可以準確地估算落點資訊,並由腕關節型機器人完成拍擊的動作,且能持續拍擊使球回彈至固定高度,其連續拍擊成功率可達150下以上。
英文摘要 The main objective of this thesis is to design and implement a vision-based paddle juggling system using a stereo vision system and a carpal wrist robot. The carpal wrist robot is chosen because of its superior dexterity and similarity to the human wrist and it has three degree of freedom. As a result of its symmetric parallel architecture, it has a large payload capacity. In the stereo vision system, two image sensors are used to provide stereo vision. The stereo vision system is able to track the ball according to its color information. An extended Kalman filter is then used to estimate the dynamics of the ball and predict its future trajectory and velocity. Based on the dynamics of the ball estimated by the extended Kalman filter, the carpal wrist robot can determine the timing, velocity, position and posture for paddling the ball. Image processing algorithms are implemented on an FPGA-based board through Verilog hardware description languages. The extended Kalman filter and robot controller are implemented on digital signal processors. Through experiments, the ball can be tracked by the stereo vision system, and the carpal wrist robot can continue to paddle the ball and the ball is maintained at set height with at least 150 successful strokes.
論文目次 目錄
頁次
摘要 I
Extended Abstract II
誌謝 VII
目錄 VIII
圖目錄 XII
表目錄 XIX
第一章 緒論
1-1 研究背景與動機 1-1
1-2 研究目的 1-3
1-3 研究步驟 1-6
1-4 相關文獻回顧 1-8
1-5 論文架構 1-12
第二章 相機模型與參數校正
2-1 前言 2-1
2-2 針孔成像模型 2-1
2-3 座標旋轉與平移 2-4
2-4 相機參數校正 2-8
2-5 多相機空間幾何與物體座標計算 2-26

第三章 腕關節型機器人介紹與運動分析
3-1 前言 3-1
3-2 腕關節型機器人介紹 3-1
3-3 運動學分析 3-3
3-3-1 正向運動學分析 3-8
3-3-2 逆向運動學分析 3-11
第四章 基礎動力學與接觸力學簡介
4-1 前言 4-1
4-2 牛頓運動定律 4-1
4-3 碰撞 4-2
4-3-1 恢復係數 4-4
4-3-2 正碰撞 4-7
4-3-3 偏心碰撞 4-9
4-4 偏心碰撞影響球與擊球板之偏移 4-12
4-5 接觸力學應用 4-15
4-5-1 連續接觸力模型之赫茲接觸理論 4-16
4-5-2 連續接觸力模型之等效彈簧阻尼模型 4-18
第五章 質點軌跡預測
5-1 前言 5-1
5-2 卡門濾波器 5-1
5-3 質點拋體運動學 5-10

第六章 擊球控制器設計
6-1 前言 6-1
6-2 拍擊策略 6-1
6-2-1 垂直擊球 6-2
6-2-2 修正距離擊球 6-11
6-2-3 擊球時間點分析 6-16
6-3 永磁式直流馬達數學模型與參數識別 6-19
6-4 擊球控制器設計 6-25
第七章 機構設計及製作與系統硬體架構
7-1 前言 7-1
7-2 腕關節型機器人設計及製作 7-1
7-3 整體系統硬體架構 7-5
7-4 影像感測器模組 7-6
7-5 DE0-CV影像處理模組 7-7
7-6 FPGA數位邏輯模組 7-9
7-7 數位訊號處理控制模組 7-9
7-8 脈波寬度調變馬達驅動模組 7-11
第八章 影像處理流程與系統實現
8-1 前言 8-1
8-2 影像處理流程 8-1
8-2-1 影像擷取 8-2
8-2-2 去馬賽克 8-5
8-2-3 色彩空間轉換與二值化 8-6
8-2-4 影像扭曲校正 8-7
8-2-5 影像形態學 8-8
8-2-6 目標物重心計算 8-10
8-3 DE0-CV內部模組規劃 8-10
8-3-1 位移暫存器模組 8-18
8-3-2 濾波遮罩 8-21
8-3-3 影像扭曲校正模組 8-21
第九章 實驗結果
9-1 前言 9-1
9-2 系統實驗硬體架設 9-1
9-3 影像視覺系統實驗結果 9-3
9-3-1 影像視覺系統擷取實驗 9-3
9-3-2 拋體落點預測結合擴展卡門濾波器實驗 9-5
9-4 PID控制器驗證 9-11
9-5 腕關節型機器人控制實驗結果 9-14
9-6 拍擊系統實驗結果 9-22
第十章 結論與未來展望
10-1 結論 10-1
10-2 未來展望 10-1
參考文獻 Ref-1
附錄 A-1
參考文獻 參考文獻
[1] A. A. Rizzi and D. E. Koditschek, “Further Progress in Robot Juggling: Solvable Mirror Laws,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 2935-2940, 1994.
[2] A. Nakashima, Y. Sugiyama, and Y. Hayakawa, “Paddle Juggling by Robot Manipulator with Visual Servo,” Robot Manipulators, Marco Ceccarelli (Ed.), ISBN: 978-953-7619-06-0, InTech, pp. 425-440, 2008.
[3] P. Kulchenko and E. Todorov, “First-exit Model Predictive Control of Fast Discontinuous Dynamics: Application to Ball Bouncing,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2144-2151, 2011.
[4] S. L. Canfield, Development of the Carpal Wrist: A Symmetric, Parallel-Architecture Robotic Wrist, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 1997.
[5] S. L. Canfield, C. F. Reinholtz, R. J. Salerno, and A. J. Ganino, “Spatial, Parallel-Architecture Robotic Carpal Wrist,” U.S. Patent 5699695, 1997.
[6] 蕭家豪,「以視覺為基礎之腕關節型機器人拍擊控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一○五年一月。
[7] TMS320DM6437 Digital Media Processor Datasheet, Texas Instrument, 2008.
[8] J. L. Barron, D. J. Fleet, and S. S. Beachemin, “Performance of Optical Flow Techniques,” International Journal of Computer Vision, Vol. 12, No. 1, pp. 43-77, 1994.
[9] K. P. Horn and G. Schunck, “Determining Optical Flow,” Artificial Intelligence, Vol. 17, pp. 185-203, 1981.
[10] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proceedings of Seventh International Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 674-679, 1981.
[11] D. J. Dailey, F. W. Cathey, and S. Pumrin, “An Algorithm to Estimate Mean Traffic Speed Using Uncalibrated Cameras,” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 2, pp. 98-107, 2000.
[12] D. Murray and A. Basu, “Motion Tracking with an Active Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol. 16, No. 5, pp. 449-459, 1994.
[13] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A Survey on Pixel-Based Skin Color Detection Techniques,” Proceedings of the International Conference on Computer Graphics, pp. 85-92, 2003.
[14] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer, and M. Hahnle, “Off-the-Shelf Vision for a Robotic Ball Catcher,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Vol. 3, pp. 1623-1629, 2001.
[15] J. Hall and R. Williams, “Case Study: Inertial Measurement Unit Calibration Platform,” Journal of Robotic Systems, Vol. 17, No. 11, pp. 623-632, 2000.
[16] M. Majji and M. Diz, “Vision Based Feedback Control of a Carpal Wrist Joint,” Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, pp. 1-18, Aug. 2013.
[17] J. Wrobel, R. Hoyt, J. Slostad, N. Storrs, J. Cushings, T. Moser, J. St. Luise, and G. Jimmerson, “PowerCube (TM) - Enhanced Power, Propulsion, and Pointing to Enable Agile, High-Performance CubeSat Missions,” Proceedings of AIAA SPACE 2012 Conference & Exposition, pp. 1-11, Sep. 2012.
[18] C. Vaida, N. Plitea, B. Gherman, A. Szilaghyi, B. Galdau, D. Cocorean, F. Covaciu, and D. Pisla, “Structural Analysis and Synthesis of Parallel Robots for Brachytherapy,” New Trends in Medical and Service Robots, Vol. 16, pp. 191-204, 2014.
[19] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “A Simple Juggling Robot: Theory and Experimentation,” Proceedings of 1st International Symposium on Experimental Robotics, Vol. 1, pp. 35-73, 1990.
[20] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning and Control of Robotic Juggling and Catching Tasks,” International Journal of Robotics Research, Vol. 13, No. 2, pp. 101-118, Apr. 1994.
[21] S. Schaal and C. G. Atkeson, “Robot Juggling: Implementation of Memory-based Learning,” IEEE Control Systems Magazine, Vol. 14, No. 1, pp. 57-71, Feb. 1994.
[22] R. Mori, K. Hashimoto, E. Takagi, and E. Miyazaki, “Examination of Ball Lifting Task using a Mobile Robot,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, pp. 369-374, 2004.
[23] R. G. Sanfelice, A. R. Teel, and R. Sepulchre, “A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems,” Proceedings of IEEE Conference on Decision and Control, pp. 5282-5287, Dec. 2007.
[24] P. Reist and R. D’Andrea, “Bouncing an Unconstrained Ball in Three Dimensions with a Blind Juggling Robot,” Proceedings of IEEE Conference on Robotics and Automation, pp. 1774-1781, May 2009.
[25] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年七月。
[26] 林家民,「以視覺伺服為基礎之物體追蹤系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十五年七月。
[27] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年七月。
[28] 朱立銘,「以視覺伺服為基礎之球與板系統追蹤平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年七月。
[29] 蔡任右,「以視覺為基礎之複雜背景下物體追蹤控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十八年七月。
[30] 顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年七月。
[31] 張居強,「以視覺伺服為基礎之舉球控制系統之研製」,國立成功大學工程科學系碩士論文,民國九十八年七月。
[32] 簡彰億,「以DSP為基礎於複雜背景中之視覺引導全像機器人之研製」,國立成功大學工程科學系碩士論文,民國九十九年七月。
[33] 林柏瑋,「以視覺為基礎之擊球控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國九十九年七月。
[34] 鄭文勝,「利用順滑模態控制之球與球系統穩定化」,國立成功大學工程科學系碩士論文,民國一○○年七月。
[35] 楊宗諭,「以顏色為基礎之多相機追蹤控制系統設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年七月。
[36] 王翊,「以影像為基礎之拋體軌跡預測及攔接」,國立成功大學工程科學系碩士論文,民國一○四年七月。
[37] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
[38] K. Inkilä, “Homogeneous Least Squares Problem,” Photogrammetric Journal of Finland, Vol. 19, No. 2, pp. 34-42, 2005.
[39] D. Hearn and M. Baker, Computer Graphics C Version, Prentice Hall Press, Upper Saddle River, N.J., 1997.
[40] P. Maynard, Drawing Distinctions: The Varieties of Graphic Expression, Cornell University Press, Ithaca, N.Y., 2005.
[41] M. Berger, Geometry I, Springer-Verlag, Berlin, 2008.
[42] R. Hartley, Multiple View Geometry in Computer Vision, Cambridge University Press, New York, 2004.
[43] J. Weng, P. Cohen, and M. Herniou, “Camera Calibration with Distortion Models and Accuracy Evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 10, pp. 965-980, Oct. 1992.
[44] S. L. Altman, Rotations, Quaternions, and Double Groups, Dover Publications, Mineola, N.Y., 1986.
[45] K. M. Walker, Applied Mechanics, Prentice Hall Press, Upper Saddle River, N.J., 1999.
[46] K. L. Johnson, Contact Mechanics, Cambridge University Press, New York, 1985.
[47] W. Goldsmith, Impact-the Theory and Physical Behaviour of Colliding Solids, Edward Arnold Ltd, London, 1960.
[48] K. H. Hunt and F. R. E. Grossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME Journal of Applied Mechanics, Vol. 42, No. 2, pp. 440-445, Jun. 1975.
[49] H. M. Lankarani and P. E. Nikavesh, “A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems,” ASME Journal of Mechanical Design, Vol. 112, No. 3, pp. 369-376, 1990.
[50] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, pp. 35-45, 1960.
[51] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
[52] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1984.
[53] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
[54] 蕭景隆,「線性馬達驅動控制系統之設計與實現」,國立成功大學工程科學系碩士論文,民國一○三年一月。
[55] 1/2.5-Inch 5Mp CMOS Digital Image Sensor MT9P001 Datasheet, Micron Technology, Inc., 2005.
[56] TMS320F281x Digital Signal Processors Datasheet, Texas Instrument, 2019.
[57] A3941 Automotive Full Bridge MOSFET Driver, Allegro Inc., 2008.
[58] R. M. Rogers, Applied Mathematics in Integrated Navigation Systems (AIAA Education Series), 2nd ed., AIAA, Washington, D.C., 2003.
[59] C. F. Kao and T. L. Chen, “Design and Analysis of an Orientation Estimation System Using Coplanar Gyro-free Inertial Measurement Unit and Magnetic Sensors,” Sensors and Actuators A, Vol. 144, No. 2, pp. 251-262, 2008.
[60] D. Mortari, M. Angelucci, and F. L. Markley, “Singularity and Attitude Estimation,” Proceedings of the 10th Annual AIAA/AAS Space Flight Mechanics Meeting, paper No. AAS 00-130, 2000.
[61] William Rowan Hamilton,
http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html
[62] H. Goldstein, Classical Mechanics, 3rd ed., Addison Wesley, Boston, 1980.
[63] D. Koks, Explorations in Mathematical Physics, Springer, New York, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2026-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw