進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201914584400
論文名稱(中文) 倒W的姿勢對投球機制之生物力學分析
論文名稱(英文) The Effect of Inverted W on Baseball Biomechanics
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 林冠廷
研究生(英文) Kuan-Ting Lin
學號 N96061232
學位類別 碩士
語文別 中文
論文頁數 176頁
口試委員 指導教授-王榮泰
共同指導教授-周伯禧
口試委員-林槐庭
中文關鍵字 棒球  投手  肩關節外旋角度  跨步時期  運動學  動力學  shoulder external rotation  Inverted W  stride phase 
英文關鍵字 baseball  pitcher  Kinematics  kinetics  Inverted W  stride phase  shoulder external rotation 
學科別分類
中文摘要 前言:
根據以往的文獻,棒球投手在投擲的過程中,前導腳著地時刻點前後是非常重要的時刻,在這瞬間投手骨盆及軀幹開始進行轉動,同時也是下肢開始儲存能量並將其傳送到投手的慣用手的時刻,對於往後時期的影響扮演很重要的角色。
目的:
本研究宗旨在透過3-D動作分析針對投手於跨步時期(stride phase),有無inverted w的現象的投手對於往後運動學、動力學及作功的差異,並進一步探討這兩種不同投球方式於投手所造成的影響。
方法:
本研究將受測者分為兩族群,分別為跨步時期,投手出現Inverted W(肩關節垂直外展大於90度,而且肩關節呈現內旋),在此縮寫為INV_W族群,以及於前導腳著地瞬間,肩關節外旋角度大於45度,在此表示為Control族群。本實驗於戶外棒球投手丘上使用頻率300fps的三維動作分析系統擷取投手投擲直球動作的過程並導入matlab程式進行模擬並計算投手的運動學、動力學及作功再導入spss進行統計。統計方法使用獨立樣本T檢定分析,比較兩族群間生物力學差異。設p<0.05為顯著差異。

結果:
1. 年齡、身高以及體重方面,兩族群並未達到顯著差異,球速表現方面,INV_W族群平均較Control族群高一些,但兩族群並未達到顯著差異,靜態關節活動度方面,兩族群皆未達到顯著差異。
2. 在肩膀受力方面,在手臂後拉時期,最大肩關節上側力、最大肩關節前側力INV_W族群大於Control族群;在手臂加速時期,最大肩關節近端力INV_W族群大於Control族群;在手臂減速時期,最大肩關節後側力、最大肩關節下側力、最大肩關節水平內收力矩INV_W族群大於Control族群。
3. 在手肘受力方面,在手臂後拉時期,肘關節內側力INV_W族群大於Control族群;在手臂加速時期,肘關節近端力、最大肘關節前側力、最大肘關節屈曲力矩INV_W族群大於Control族群。
4. 在作功方面,在手臂後拉時期,最大肩關節內旋作功、最大肘關節內翻作功INV_W族群大於Control族群;在手臂加速時期,最大肘關節屈曲作功INV_W族群大於Control族群




結論:
結果顯示在許多動力學作用力上,INV_W族群的肩、肘關節受力都比Control族群大,Control族群在手臂後拉時期時間較短暫,骨盆到軀幹的動力傳遞較優,從上肢受力來看,INV_W族群在肩、肘關節容易造成受傷的力、力矩明顯大於Control族群,例如:肘關節內翻力矩等等……,因此本研究認為Control族群屬於投擲技巧較佳的族群,INV_W族群在投球上面比較依賴手部力量來增加球速。運動學方面,Control族群在最大肩關節外旋角度(MER)之前的投球動作較快,本研究認為這樣可以減少能量散失,有利於動力傳遞。
對於長期的投球生涯,本研究認為於跨步時期的Inverted W的準備動作可能增加肩部關節旋轉肌、關節唇及肘關節內側韌帶受傷的風險。
英文摘要 Many baseball coaches consider that Inverted W pitching mechanics is a bad action, but there didn’t conduct biomechanical analysis on it. The position of the Inverted W emerged at early cocking phase. Defined early cocking phase was from wind-ups to instant of foot contact. Defined foot contact timing was the start of pitching cycle, and ball release was defined the end of pitching cycle. Twelve pitchers with Inverted W and nineteen pitchers with shoulder external rotation over 45 degree, they were recruited in this study. All subjects pitched off an outdoor mound. Three dimensional motion analysis system with 8 CCD cameras were used to measure whole body kinematics at 300 Hz. Pitcher were defined as Inverted W group(INV_W group) ,whose shoulder vertical abduction over 90 degree and shoulder internal rotation at early cocking phase. If their throwing shoulder displayed a 45 degree or more external rotation angle at instant of foot contact were defined as control group. This study showed that shoulder vertical abduction angle, shoulder external rotation angle, forearm pronation angle, trunk tilt backward angle, trunk tilt lateral angle, trunk rotation angle, pelvis rotation angle were significantly different at the instant of foot contact(FC) between INV_W group and control group. These results indicated the Inverted W at pitching early cocking phase may affect the upper torso kinetics and kinematics at the whole pitching cycle. We found INV_W group pitcher didn’t effectively utilize the body rotation during the pitching motion. From the result of kinetics, INV_W group displayed a greater force/moment in their pitching arm as compared with control group. INV_W group and control group have similarity in ball speed, however, the greater force/moment in the INV_W group will increase the risk of shoulder and elbow injuries.
These findings are useful for pitchers and coaches to have a better understanding of pitching biomechanical in pitchers whether Inverted W at early cocking phase or not. Further training program may be necessary to improve pitching motion and decrease the risk of injury.
論文目次 內文目錄
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 6
1.2.1 過肩投球之動作分期 7
1.2.2 投球過程中主要使用的肌群 9
1.2.3 直球的生物力學相關研究 11
1.3 研究動機 27
1.4 研究目的 28
1.5 研究假設 29
第二章 理論與分析方法 32
2.1 運動學與動力學之理論方法 32
2.2 實驗假設 35
2.3 定義反光球位置 36
2.3.1 靜態與動態資料描述 40
2.3.2 關節中心 41
2.3.3 座標系的訂定 44
2.4 生物力學模式在空間中運動的描述與分析 51
2.4.1 旋轉矩陣與關節夾角 53
2.4.2 角速度與角加速度之計算 56
2.4.3 肢段作用力之計算 58
2.4.4 肢段作用力矩之計算 59
2.4.5 肢段做功之計算 61
2.5 運動學與動力學的流程 62
2.6 運動學與動力學的方向定義 65
2.6.1 運動學方向定義 65
2.6.2 動力學方向定義 68
2.6.3 運動學、動力學重要參數定義 69
2.6.4 Orientation Pelvis rotation、Orientation trunk rotation 角度定義 70
第三章 研究方法 72
3.1 實驗設備 72
3.1.1 硬體設備 72
3.1.2 軟體設備 74
3.2 研究對象 75
3.2.1 受測者資料 76
3.3 實驗設備架設 78
3.4 實驗流程 80
3.4.1 實驗問卷調查 82
3.4.2 實驗空間校正 82
3.4.3 暖身練習 83
3.4.4 肩及肘關節活動角度量測 84
3.4.5 手持式肌力量測 87
3.4.6 投球動作分析 89
3.5 資料處理 90
3.6 統計方法 91
3.7 標準化方法 92
第四章 研究結果 93
4.1 球速、基本資料、關節活動度 93
4.2 兩族群運動學 95
4.2.1 前導腳著地之運動學比較 95
4.2.2 手臂後拉時期之運動學比較 98
4.2.3 肩關節最大外旋之運動學比較 100
4.2.4 手臂加速時期之運動學比較 102
4.2.5 球離手之運動學比較 104
4.2.6 手臂減速時期之運動學比較 106
4.2.7 肩關節最大內旋之運動學比較 107
4.3 兩族群投球動力學 109
4.3.1 手臂後拉時期 109
4.3.2 手臂加速時期 113
4.3.3 手臂減速時期 117
4.4 軀幹轉向前方時間、MER 出現時間點 121
4.5 兩族群投球之能量變化「作功」 123
4.5.1 手臂後拉時期(Arm cocking phase) 123
4.5.2 手臂加速時期(Arm acceleration phase) 123
第五章 討論 125
5.1 基本資料、關節活動度 125
5.2 肌力 126
5.3 在前導腳著地時刻點,骨盆及軀幹旋轉角度之運動學探討 127
5.4 肩、肘關節在投球時期的影響與運動傷害 131
5.5 在前導腳著地時刻點,肩關節外旋角度對肩膀的影響 141
5.6 肩關節水平外展探討 142
5.7 肘關節動力學、運動學影響 146
5.8 投手作功探討 150
第六章 結論與未來展望 152
6.1 結論 152
6.2 未來展望 152
參考文獻 153
【附錄A】運動學參數曲線 159
【附錄B】動力學參數曲線 166

表目錄
表 1-1 文獻探討上肩投手投擲直球於前導腳著地時之運動學 14
表 1-2 文獻探討上肩投手投擲直球於手臂後拉時期之運動學 16
表 1-3 文獻探討上肩投手投擲直球於手臂加速時期之運動學 18
表 1-4 文獻探討上肩投手投擲直球於球離手之運動學 20
表 1-5 文獻探討上肩投手投擲直球於手臂後拉時期之動力學 22
表 1-6 文獻探討上肩投手投擲直球於手臂加速時期之動力學 24
表 1-7 文獻探討上肩投手投擲直球於手臂減速時期之動力學 26
表 3-1 INV_W 族群受測者基本資料 76
表 3-2 Control 族群投手受測者基本資料 77
表 4-1 兩族群之投手基本資料、球速比較 94
表 4-2 兩族群投手慣用手活動度比較 94
表 4-3 兩族群於前導腳著地瞬間之運動學結果 97
表 4-4 兩族群於手臂後拉時期之運動學結果 99
表 4-5 兩族群於肩關節最大外旋角度之運動學結果 101
表 4-6 兩族群於手臂加速時期之運動學結果 103
表 4-7 兩族群於球離手時刻點之運動學結果 105
表 4-8 兩族群於手臂減速時期之運動學結果 106
表 4-9 兩族群於肩關節最大內旋時刻點之運動學結果 108
表 4-10 兩族群於手臂後拉時期之動力學結果 111
表 4-11 兩族群於手臂後拉時期之標準化動力學結果 112
表 4-12 兩族群於手臂加速時期之動力學結果 115
表 4-13 兩族群於手臂加速時期之標準化動力學結果 116
表 4-14 兩族群於手臂減速時期之動力學結果 119
表 4-15 兩族群於手臂減速時期之標準化動力學結果 120
表 4-16 兩族群投手投擲直球之肩關節最大外旋角度及軀幹轉向前方時間的比較 122
表 4-17 兩族群動力學『作功』 124
表 5-1 兩族群投手於各時刻點軀幹旋轉角度比較 130
表 5-2 從前導腳著地到最大骨盆旋轉角速度所花費時間比較 130
表 5-3 Early rotator 與 Late rotator 的比較(Weight et al.[69]) 130
表 5-4 各時期所花費的時間比較 133
表 5-5 兩族群最大骨盆、軀幹旋轉角速度時刻點比較 133
表 5-6 兩族群最大受力比較 135
表 5-7 兩族群各時刻點的肩關節水平外展角度 143
表 5-8 兩族群各區肩肩關節前後側力 144
表 5-9 兩族群各區間肩關節近端力比較 144
表 5-10 兩族群各時刻點的肩關節垂直外展角度比較 144
表 5-11 兩族群各區間肩關節上下側力比較 145
表 5-12 兩族群肘關節運動學、動力學比較整理 147
表 5-13 兩族群肘關節外翻力矩比較 148
表 5-14 與球速增加相關投球因素 151

圖目錄
圖 1-1 跨步時期出現 Inverted W 4
圖 1-2 前導腳著地時刻點,肩關節外旋角度高於 45° 4
圖 1-3 過肩投球之動作分期 8
圖 1-4 直球握法 12
圖 1-5 投手 Power T 31
圖 2-1 上肢關節瞬間所受的合力與合力矩之自由體圖 33
圖 2-2 反光球標記位置 39
圖 2-3 靜態中立姿勢 40
圖 2-4 軀幹(Trunk)座標系 44
圖 2-5 上臂(Upperarm)座標系 45
圖 2-6 前臂(Forearm)座標系 46
圖 2-7 手腕(Hand)座標系 47
圖 2-8 大腿(Thigh)座標系 48
圖 2-9 小腿(Shank)座標系 49
圖 2-10 骨盆(Pelvis)座標系 50
圖 2-11 上肢各個肢段座標系圖 51
圖 2-12 下肢各個肢段座標系圖 52
圖 2-13 腕關節、肘關節、肩關節及膝關節尤拉角的旋轉順序 54
圖 2-14 運動學計算流程 63
圖 2-15 動力學流程 64
圖 2-16 肘關節屈曲 66
圖 2-17 肩關節外旋/內旋 66
圖 2-18 肩關節垂直外展 66
圖 2-19 肩關節水平外展 66
圖 2-20 膝關節屈曲 67
圖 2-21 軀幹前傾 67
圖 2-22 軀幹外傾 67
圖 2-23 軀幹(ωUT)、骨盆(ωP)旋轉角速度 67
圖 2-24 肩關節受力定義 68
圖 2-25 肩關節受力矩定義 68
圖 2-26 肘關節受力定義 68
圖 2-27 肘關節受力矩定義 68
圖 3-1 三維動作分析系統 72
圖 3-2 手持式肌力器 73
圖 3-3 測速槍 73
圖 3-4 關節活動角度量角器 73
圖 3-5 球員篩選流程圖 75
圖 3-6 棒球場牛棚圖 79
圖 3-7 棒球場戶外牛棚圖 79
圖 3-8 實驗流程 81
圖 3-9 選手傳接球熱身(catch ball) 83
圖 3-10 肩關節內旋角度 86
圖 3-11 肩關節外旋角度 86
圖 3-12 肘關節伸展角度 86
圖 3-13 肘關節屈曲角度 86
圖 3-14 提攜角角度 86
圖 5-1 球速與前導腳著地到最大骨盆旋轉角速度所花費時間關係 Urbin et al[66] 129
圖 5-2 兩族群在運動學區間之使用時間比較 134
圖 5-3 本實驗兩族群骨盆旋轉角度比較 136
圖 5-4 本實驗兩族群軀幹旋轉角度比較 137
圖 5-5 本實驗兩族群軀幹外傾角度比較 137
圖 5-6 本實驗兩族群肩關節外旋角度比較 138
圖 5-7 兩族群肘關節近端力比較 138
圖 5-8 本實驗兩族群肩關節近端力比較 139
圖 5-9 本實驗兩族群肩關節內旋力矩比較 139
圖 5-10 本實驗兩族群肘關節內翻力矩比較 140
圖 5-11 兩族群肩關節水平內收力矩比較 142
圖 5-12 兩族群在肩關節前/後側力比較 143
圖 5-13 兩族群肩關節上/下側力比較 145
圖 5-14 Early rotator 與 Late rotator 的 Elbow varus torque 比較 Wight[69] 148
圖 5-15 本實驗兩族群肘關節內翻力矩比較圖 149
參考文獻 [1] Wiemi A. Douoguih, Early Cocking Phase Mechanics and Upper Extremity Surgery Risk in Starting Professional Baseball Pitchers. The Orthopaedic Journal of Sports Medicine. The Author(s) 2015
[2] Andrews JR, Carson WG Jr, McLeod WD. Glenoid labrum tears related to the long head of the biceps. Am J Sports Med13:337-41, 1985.
[3] Fleisig, G.S., et al., Do baseball pitchers improve mechanics after biomechanical evaluations? Sports biomechanics,2017: P. 1-8.
[4] Asmussen E and Bondepet.F. Storage of Elastic Energy in Skeletal-Muscles in Man. Acta physiologica Scandinavica 91: 385-392, 1974.
[5] M.A. Urbin, PhD, Auburn University, Associations Between Timing in the Baseball Pithc and Shoulder Kinetics, Elbow Kinetics, and Ball Speed. The American Journal of Sports Medicine, Vol. 41, No. 2, 2012.
[6] Solomito, M.J., E.J. Garibay, and C.W. Nissen, Sagittal Plane Trunk Tilt Is Associated With Upper Extremity Joint Moments and Ball Velocity in Collegiate Baseball Pitchers. Orthop J Sports Med, 2018. 6(10): p. 2325967118800240
[7] Bigliani LU, Codd TP, Connor PM, et al: Shoulder motion and laxity in the professional baseball player. Am J Sports Med 25: 609–613, 1997.
[8] Benkibler W. Biomechanical Analysis of the Shoulder during Tennis Activities. Clin Sport Med 14: 79-85, 1995.
[9] Barrentine SW, Fleisig GS, Whiteside JA, Escamilla RF, and Andrews JR. Biomechanics of windmill softball pitching with implications about injury mechanisms at the shoulder and elbow. The Journal of orthopaedic and sports physical therapy 28: 405-415, 1998.
[10] Chu YC, Fleisig GS, Simpson KJ, and Andrews JR. Biomechanical Comparison Between Elite Female and Male Baseball Pitchers. J Appl Biomech 25: 22-31, 2009.
[11] Brandon J. Erickson, MD, Anil K. Gupta, MD, MBA, Joshua D. Harris, MD, Charles Bush-Joseph, MD, Bernard R. Bach, MD, Geoffrey D. Abrams, MD, Angielyn M. San Juan, BS, Rate of return to pitching and performance after Tommy John surgery in Major League Baseball pitchers. The American Journal of Sports Medicine.2013
[12] Dillman CJ, Fleisig GS, Andrews JR: Biomechanics of pitching with emphasis upon shoulder kinematics. J Orthop Sports Phys Ther, 18: 402–408, 1993.
[13] Dun S, Kingsley D, Fleisig GS, Loftice J, Andrews JR. Biomechanical comparison of the fastball from wind-up and the fastball from stretch in
[14] Digiovine NM, Jobe FW, Pink M, and Perry J. An electromyographic analysis of the upper extremity in pitching. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons 1: 15-25, 1992.
[15] Dun SC, Fleisig GS, Loftice J, Kingsley D, and Andrews JR. The relationship between age and baseball pitching kinematics in professional baseball pitchers. J Biomech 40: 265-270, 2007.
[16] Dun SC, Loftice J, Fleisig GS, Kingsley D, and Andrews JR. A biomechanical comparison of youth baseball pitches - Is the curveball potentially harmful? Am J Sport Med 36: 686-692, 2008.
[17] Dempster WT. Space requirements of the seated operator. WADC Technical Report 55159; 55-159. 1955.
[18] Escamilla RF and Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med 39: 569-590, 2009.
[18] Escamilla RF and Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med 39: 569-590, 2009.
[19] Escamilla RF, Fleisig GS, Barrentine SW, Zheng NQ, and Andrews JR. Kinematic comparisons of throwing different types of baseball pitches. J Appl Biomech 14: 1-23, 1998.
[20] Escamilla R, Fleisig G, Barrentine S, Andrews J, and Moorman C, 3rd. Kinematic and kinetic comparisons between American and Korean professional baseball pitchers. Sports biomechanics / International Society of Biomechanics in Sports 1: 213-228, 2002.
[21] Escamilla RF, Barrentine SW, Fleisig GS, Zheng NQ, Takada Y, and Andrews JR. Pitching biomechanics as a pitcher approaches muscular fatigue during a simulated baseball game. Am J Sport Med 35: 23-33, 2007
[22] Arnel L. Aguinaldo, MA, ATC, Henry Chambers, MD, Correlation of Throwing Mechanics With Elbow Valgus Load in Adult Baseball Pitchers. Center for Human Performance. The American Journal of Sports Medicine, Vol. 37, No. 10
[23] Sherry L. Werner, PhD , Misty Suri, MD. Relationships between ball velocity and throwing mechanics incollegiate baseball pitchers. The American Journal of Sports Medicine, Vol. 37, No. 10. Shoulder Elbow Surg. 2008.
[24] 陳右霖,高中組棒球投手變化球之生物力學分析.成功大學組.2013
[25] Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF. Kinetics of baseball pitching with implications about injury mechanisms. Am J Sports Med. 1995;23(2):233-239.
[26] Fleisig GS, Barrentine SW, Escamilla RF, Andrews JR. Biomechanics of overhand throwing with implications for injuries. Sports Med. 1996;21(6):421-437.
[27] Fleisig GS, Bolt B, Fortenbaugh D, Wilk KE, Andrews JR. Biomechanical comparison of baseball pitching and long-toss: implications for training and rehabilitation. J Orthop Sports Phys Ther. 2011;41(5):296-303.
[28] Feltner M and Dapena J. Dynamics of the Shoulder and Elbow Joints of the Throwing Arm during a Baseball Pitch. Int J Sport Biomech 2: 235-259, 1986.
[29] Fleisig GS, Escamilla RF, Andrews JR, Matsuo T, Satterwhite Y, and Barrentine SW. Kinematic and kinetic comparison between baseball pitching and football passing. J Appl Biomech 12: 207-224, 1996.
[30] Fleisig GS, Barrentine SW, Zheng N, Escamilla RF,Andrews JR. Kinematic and kinetic comparison of baseball pitching among various levels of development. J Biomech; 32: 1371-1375. 1999.
[31] Fleisig GS, Kingsley DS, Loftice JW, Dinnen KP, Ranganathan R, Dun S, Escamilla RF, and Andrews JR. Kinetic comparison among the fastball, curveball, change-up, and slider in collegiate baseball pitchers. Am J Sport Med 34: 423-430, 2006.
[32] Hislop HJ, Montgomery J. Daniels and Worthingham s muscle testing: techniques of manual examination. Philadelphia, Place, 1995.
[33] Jobe FW, Moynes DR, Tibone JE, and Perry J. An Emg Analysis of the Shoulder in Pitching .2. Am J Sport Med 12: 218-220, 1984.
[34] Chalmers, P.N., et al., Fastball Pitch Velocity Helps Predict Ulnar Collateral Ligament Reconstruction in Major League Baseball Pitchers. Am J Sports Med, 44(8): p. 2130-5, 2016.
[35] Gowan, I.D., et al., A comparative electromyographic analysis of the shoulder during pitching. Professional versus amateur pitchers. Am J Sports Med 15(6): p. 586-90, 1987.
[36] Jobe FW, Tibone JE, Perry J, and Moynes D. An EMG analysis of the shoulder in throwing and pitching. A preliminary report. The American journal of sports medicine 11: 3-5, 1983.
[37] Significant temporal events of pitching. Shane T. Seroyer, MD, Shane J. Nho, MD, Bernard R. Bach, MD, Charles A. Bush-Joseph, MD, Gregory P. Nicholson, MD, and Anthony A. Romeo, MD
Sports Health 2(2): p. 135-46, 2010.
[38] Bartlett LR, Storey MD, and Simons BD. Measurement of Upper Extremity Torque Production and Its Relationship to Throwing Speed in the Competitive Athlete. Am J Sport Med 17: 89-91, 1989.
[39] Kindall J. Baseball: play the winning way. Sports Illustrated, Place, 1993.
[41] Kronberg M, Nemeth G, and Brostrom LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clinical orthopaedics and related research: 76-85, 1990.
[42] McLeod WD, Andrews JR. Mechanisms of shoulder injuries. Phys Ther; 66:1901-4, 1986
[43] Mihata T, Lee Y, McGarry MH, Abe M, and Lee TQ. Excessive humeral external rotation results in increased shoulder laxity. The American journal of sports medicine 32: 1278-1285, 2004.
[44] Werner SL, Guido JA, Stewart GW, McNeice RP, VanDyke T, and Jones DG. Relationships between throwing mechanics and shoulder distraction in collegiate baseball pitchers. Journal of shoulder and elbow surgery 16: 37-42, 2007.
[45] Werner SL, Fleisig GS, Dillman CJ, Andrews JR. Biomechanics of the elbow during baseball pitching. J Orthop Sports Phys Ther 1993;17:274-278.
[46] Werner SL, Gill TJ, Murray TA, Cook TD, Hawkins RJ. Relationships between throwing mechanics and shoulder distraction in professional baseball pitchers. Am J Sports Med 2001;29: 354-8.
[47] Woltring HJ. A Fortran Package for Generalized, Cross-Validatory Spline Smoothing and Differentiation. Adv Eng Softw Workst 8: 104-113, 1986.
[48] Walch G, Boileau P, Noel E, Donell S. Impingement of the deep surface of the supraspinatus tendon on the posterosuperior glenoid rim: an arthroscopic study. J Shoulder Elbow Surg 1992;1: 238-45.
[49] Lyman S, Fleisig GS, Andrews JR, Osinski ED. Effect of pitch type, pitch count, and pitching mechanics on risk of elbow and shoulder pain in youth baseball pitchers. Am J Sports Med 2002;30:463-8.
[50] Lyman SL, Fleisig GS, Waterbor JW, Funkhouser EM, Pulley L, Andrews JR, et al. Longitudinal study of elbow and shoulder pain in youth baseball pitchers. Med Sci Sports Exerc 2001;33:1803-10.
[51] Nadler SF. Injury in a throwing athlete: Understanding the kinetic chain. American Journal of Physical Medicine & Rehabilitation; 83: 79-79. 2004.
[52] Nissen CW, Westwell M, Ounpuu S, Patel M, Tate JP, Plerz K, Burns JP, and Bicos J. Adolescent baseball pitching technique: A detailed three-dimensional biornechanical analysis. Med Sci Sport Exer 39: 1347-1357, 2007.
[53] Nobuhara K. The shoulder: its function and clinical aspects. In Nobuhara K, editor. The shoulder in sports. Singapore: World Scientific; 2003. p. 401-60.
[54] Nobuhara K, Ikeda H. Rotator interval lesion. Clin Orthop Relat Res 1987; 223:44-50.
[55] Paul Pei-hsi Chou, Yen-po Huang, Yi-hsuan Gu, Chiang Liu, Shen-kai Chen, Kai-cheng Hsu, Rong-tyai Wang, Ming-jer Huang, and Hwai-ting Lin. Change in pitching biomechanics in the late-inning in Taiwanese high school baseball pitchers. J strength Cond Res 29:1500-8, 2015.
[56] Reinold MM, Wilk KE, Macrina LC, Sheheane C, Dun S, Fleisig GS, Crenshaw K, and Andrews JR. Changes in shoulder and elbow passive range of motion after pitching in professional baseball players. Am J Sport Med 36: 523-527, 2008.
[57] Roach NT and Lieberman DE. Upper body contributions to power generation during rapid, overhand throwing in humans. J Exp Biol 217: 2139-2149, 2014.
[58] Roach NT, Venkadesan M, Rainbow MJ, and Lieberman DE. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498: 483-486, 2013.
[59] Roach NT and Lieberman DE. Upper body contributions to power generation during rapid, overhand throwing in humans. J Exp Biol 217: 2139-2149, 2014.
[60] Roach NT, Venkadesan M, Rainbow MJ, and Lieberman DE. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498: 483-486, 2013
[61] Sabick MB, Torry MR, Lawton RL, and Hawkins RJ. Valgus torque in youth baseball pitchers: A biomechanical study. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons. 13: 349-355, 2004.
[62] Stodden DF, Fleisig GS, McLean SP, and Andrews JR. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation. J Appl Biomech 21: 44-56, 2005.
[63] Tomoyuki, M. Masahiro, K. Tsutomu, J. Daiki, N. Daisaku, H. Takeo, I. and Daisuke, K. STERNOCLAVICULAR JOINT MOVEMENT DURING BACKSWING IN BASEBALL PITCHING MAY BE A GOOD INDICATOR OF SHOULDER INJURY. Nature 49: 483-486, 2015.
[64] Werner SL, Guido JA, Jr., Stewart GW, McNeice RP, VanDyke T, and Jones DG. Relationships between throwing mechanics and shoulder distraction in collegiate baseball pitchers. Journal of shoulder and elbow surgery 16: 37-42, 2007.
[65] Takagi Y, Oi T, Tanaka H, Inui H, Fujioka H, Tanaka J, Yoshiya S, and Nobuhara K. Increased horizontal shoulder abduction is associated with an increase in shoulder joint load in baseball pitching. Journal of shoulder and elbow surgery 23: 1757-1762, 2014.
[66] Urbin MA, Fleisig GS, Abebe A, and Andrews JR. Associations between timing in the baseball pitch and shoulder kinetics, elbow kinetics, and ball speed. The American journal of sports medicine 41: 336-342, 2013.
[67] Takanori Oi MD, Yohei Takagi MD PhD, Kohnan Tsuchiyama MD, Kotaro Hashimoto MD, Hiroshi Tanaka PhD, Hiroaki Inui MD, PhD, Katsuya Nobuharab MD, PhD, Shinichi Yoshiya MD, PhD.Three-dimensional kinematic analysis of throwing motion focusing on pelvic rotation at stride foot contact.
JSES Open Access 115-119, 2018.
[68] Sakiko Oyama, yz PhD, ATC, Bing Yu, PhD, J. Troy Blackburn,z PhD, ATC, Darin A. Padua,z PhD, ATC, Li Li, PhD, and Joseph B. Myers,z PhD, ATC. Effect of Excessive Contralateral Trunk Tilt on Pitching Biomechanics and Performance in High School Baseball Pitchers. The American Journal of Sports Medicine, Vol. 41, No. 10,2013
[69] Wight J, Richards J, and Hall S. Influence of pelvis rotation styles on baseball pitching mechanics. Sports Biomech 3: 67-83, 2004.
[70] Sakiko Oyama, yz PhD, ATC, Bing Yu, PhD, J. Troy Blackburn, z PhD, ATC, Darin A. Padua, z PhD, ATC, Li Li, PhD, and Joseph B. Myers, z PhD, ATC Improper Trunk Rotation Sequence Is Associated With Increased Maximal Shoulder External Rotation Angle and Shoulder Joint Force in High School Baseball Pitchers. The American Journal of Sports Medicine, Vol. 42, No. 9,2014
[71] Matsuo, T., Fleisig, G. S., Zheng, N., Andrews, J. R., Influence of Shoulder Abduction and Lateral Trunk Tilt on Peak Elbow Varus Torque for College Baseball Pitchers During Simulated Pitching.Journal of applied biomechanics 22(2):93-102 · May 2006 with 27
[72] 張劭任,台灣職業棒球投手直球、滑球和曲球的生物力學分析.成功大學組.2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw