進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201913454900
論文名稱(中文) 生質燃料/尿素水溶液混摻重組產富氫氣研究
論文名稱(英文) Investigation on Hydrogen-rich Syngas Production of Reforming Biofuel Blended with Aqueous Urea Solution
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 林克衛
研究生(英文) Ke-Wei Lin
學號 P18061013
學位類別 博士
語文別 英文
論文頁數 146頁
口試委員 指導教授-吳鴻文
口試委員-朱存權
口試委員-吳聖儒
口試委員-張始偉
口試委員-洪榮芳
口試委員-陳榮洪
口試委員-賴維祥
中文關鍵字 尿素水溶液  生質燃料  富氫合成氣  熱力分析  重組效率 
英文關鍵字 Aqueous urea solution (AUS)  biofuel  hydrogen-rich syngas  thermodynamic analysis  reforming efficiency 
學科別分類
中文摘要 生質燃料和尿素都是環保的氫載體,並且皆可透過重組方式產生富氫合成氣作為燃料電池發電燃料等用途。儘管生質燃料如:生質柴油(FAME)、綠色柴油(HVO)、生質乙醇與生質丁醇等重組產氫研究已有許多文獻探討,但並沒有相關文獻探討生質燃料與尿素水溶液(AUS)混合下之重組產氫之影響。因此,在本研究中,乃透過熱力學分析和實驗探討了不同的生質燃料,其中包括生質柴油,生質乙醇,生質丁醇與尿素水溶液的混合下使用不同重組方法之產氫特性與影響。
本研究分為四個部分,第一部分是基於重型車輛之固態氧化物燃料電池輔助動力單元所需之富氫合成氣為應用情境。透過熱力學分析方法來探討當生質柴油和尿素水溶液混合下,富氫合成氣產量與重組效率等。第二部分是探討生質乙醇與尿素水溶液混合下對富氫合成氣產量之影響。利用尿素水溶液代替純水,並使用熱力學分析來比較生質乙醇添加或不添加尿素水溶液下的重組產氫結果。最後再以自行設計之重組器進行驗證。第三部分是透過熱力學分析方法探討混合生質丁醇與尿素水溶液之重組產富氫合成氣。同時比較蒸汽重組和自發熱重組下富氫合成氣的產率,碳的形成,熱中性溫度(TNT)和製氫成本。第四部分是利用實驗和熱力學分析來探討生質柴油(FAME)和綠色柴油(HVO)使用部分氧化法重組產氫之結果。
在尿素與生質柴油混摻重組產氫的研究結果顯示,在700 oC的反應溫度下,當在每一莫耳生質柴油下,AUS/biodiesel莫耳比=3,O2/biodiesel莫耳比=9,最高轉化效率達83.78%,氫氣產量為30.43莫耳,CO產量為12.68莫耳。而在尿素與乙醇混摻重組產氫的研究結果顯示,在蒸氣重組下,混合尿素水溶液與生質乙醇,其富氫合成氣的產率高於使用純蒸汽。在自發熱重組下,生質乙醇重組產富氫合成氣產率隨著尿素水溶液比例增加而增加。最佳操作條件在800 oC下,當AUS/EtOH莫耳比=5,O2/EtOH莫耳比=1.2,生質乙醇添加尿素水的重組效率達到93.17%。在生質乙醇重組中使用尿素水溶液作為反應物來代替純蒸汽可以提高合成氣產率和重組效率。另外經由實驗驗證,使用乙醇與尿素水溶液混合,氫氣產量高於乙醇與水之重組反應。在第三部份,當尿素與丁醇混摻重組產氫下,在尿素水下混摻生質丁醇,在蒸氣重組與自發熱重組皆具有較高的富氫合成氣產量。當AUS/丁醇莫耳比=8,O2/丁醇莫耳比=3時,重組效率達到81.42%。在相同條件下,製氫成本低於不混合尿素水的製氫成本。
在生質柴油與綠色柴油部份氧化法重組產氫研究中,理論分析結果顯示,在800 oC下,O2/ biodiesel莫耳比為10為最佳操作條件,此時氫氣濃度達21.96%,合成氣產率為45.5%。以HVO來說,當在O2/HVO莫耳比為10時,氫氣濃度為23.01%,合成氣產率為45.14%。在biodiesel實驗結果中,當質量空燃比(mass Air/Fuel ratio, A/F)為4.7時,氫氣濃度為18.80%,一氧化碳濃度為22.87%,重組效率為72.8%。而空燃比為6.3下的HVO重組,氫氣濃度為17.65%; 一氧化碳濃度為17.67%,重組效率為62.87%。由於HVO的成分比生質柴油更複雜,因此HVO的重組效率低於生質柴油的重組效率。
英文摘要 Biofuel and urea are all environment-friendly hydrogen carriers; they can product hydrogen-rich syngas by reforming methods for fuel cell to generate the power or for other applications. There is little literature to discuss the hydrogen-rich syngas production of biofuel blended with aqueous urea solution (AUS) by reforming. In this study, different biofuels reforming including biodiesel, bioethanol, biobutanol, and HVO blend with AUS are investigated by a thermodynamic analysis and experiment. There are four parts in this study; the first part is to discuss the reforming of biodiesel blended with AUS by thermodynamics analysis. The second part is to evaluate the hydrogen production of bioethanol blended with AUS. The main concept is to utilize the AUS to replace pure water and use a thermodynamic analysis to compare the characteristics of steam and autothermal reforming of bioethanol with/without AUS. The third part is the discussion of hydrogen-rich syngas production of biobutanol blended with AUS by a thermodynamic analysis. This part includes steam reforming of biobutanol and autothermal reforming of biobutanol feed using pure steam and AUS. Hydrogen-rich syngas production, carbon formation, and hydrogen production cost are analyzed. The fourth part is the discussion of partial reforming of biodiesel (FAME) and hydrogen vegetable oil (HVO) by experimental and thermodynamic analysis. The thermodynamic analysis is used to evaluate the effect of O2/biodiesel and O2/HVO molar ratios on hydrogen-rich syngas production.
The results of first part show that at a reaction temperature of 700 oC, urea/biodiesel ratio=3, and O2/biodiesel ratio=9, the highest reforming efficiency is 83.78%, H2 production 30.43 mol, and CO production 12.68 mol. In terms of bioethanol reforming, the results show that hydrogen-rich syngas production under both steam and autothermal reforming of bioethanol with the blended AUS is higher than that under the pure steam. The best operating condition of autothermal reforming is the H2O/EtOH= 5 and the O2/EtOH= 1.2 at 800 oC, and the reforming efficiency of bioethanol with the blended AUS reaches 93.17%. The results of bioethanol reforming show that hydrogen-rich syngas production with the use of AUS is higher than that without AUS whether steam reforming or autothermal reforming. In the third part, when the AUS/butanol molar ratio is 8, and the O2/butanol molar ratio equals 3, the reforming efficiency reaches up to 81.42%. The results of partial reforming of biodiesel and HVO show that under the best operating conditions at 800 oC and an O2/ biodiesel molar ratio of 10, the concentration of the H2 is 21.96%, and the concentration of the syngas is 45.5%; at an O2/HVO molar ratio of 10, the concentration of the syngas is 45.14% with the reforming efficiency of 62.87%. In the biodiesel experimental results, when the O2/biodiesel molar ratio of 10, the H2 concentration is 18.80%, the CO concentration is 22.87%, and the reforming efficiency is 72.8%. Moreover, for HVO reforming under the air to fuel ratio of 6.30, the H2 concentration is 17.65%; the CO concentration is 17.67%, and the reforming efficiency is 62.87%. Because the composition of HVO is more complex than that of biodiesel, the reforming efficiency for HVO is lower than that for biodiesel.
論文目次 Abstract I
摘要 III
Acknowledgments V
List of Tables X
List of Figures XI
Nomenclature XVI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.2.1 Hydrogen 2
1.2.2 Biodiesel 3
1.2.3 Hydrotreated vegetable oil (HVO) 6
1.2.4 Bioethanol 8
1.2.5 Biobutanol 11
1.2.6 Urea 14
1.3 Motivations and objectives 17
Chapter 2 Methodologies 18
2.1 Thermodynamics methodologies 18
2.2 Parameter setting and chemical equilibrium 23
2.2.1 Biodiesel blending with AUS 23
2.2.2 Bioethanol blending with AUS 25
2.2.3 Biobutanol blending with AUS 26
2.2.4 Partial Oxidation Reforming of Biodiesel and HVO 27
Chapter 3 Experimental Facilities 29
3.1 Apparatus 29
3.1.1 Reformer 33
3.2 Experiment Methods and calculation formula 35
3.2.1 Bioethanol 35
3.2.2 Biodiesel and HVO 36
Chapter 4 Results and Discussions 39
4.1 Biodiesel blended with AUS 39
4.1.1 H2 production 39
4.1.2 Reaction heat 40
4.1.3 Carbon formation 41
4.1.4 CO production 41
4.1.5 Reforming efficiency 42
4.1.6 Comparison of POX, SR, and ATR 43
4.1.7 Energetic analysis of biodiesel reforming and combustion 46
4.2 Bioethanol blended with AUS 47
4.2.1 Hydrogen and Carbon monoxide yield of SRE 47
4.2.2 Carbon formation and heat production of SRE 49
4.2.3 Hydrogen Yield of ATRE 50
4.2.4 Carbon Monoxide Yield of ATRE 52
4.2.5 Carbon Formation of ATRE 53
4.2.6 Methane Production of ATRE 54
4.2.7 Heat Production of ATRE 54
4.2.8 Influence of AUS 55
4.2.9 Reforming efficiency and Cost analysis 56
4.2.10 Experimental verification of bioethanol reforming 58
4.3 Biobutanol blended with AUS 60
4.3.1 Comparison of H2 production of SRB 60
4.3.2 Product yield of SRB at constant Temperature 63
4.3.3 H2 yield of ATRB 64
4.3.4 CO yield of ATRB 66
4.3.5 CH4 yield of ATRB 66
4.3.6 CO2 yield of ATRB 67
4.3.7 Carbon Formation of ATRB 67
4.3.8 Thermal neutral temperature of ATRB 68
4.3.9 Reforming efficiency of ARTB 69
4.4 Partial reforming of Biodiesel and HVO 72
4.4.1 Thermodynamic analysis results 72
4.4.2 Experimental reforming temperature analysis 77
4.4.3 Gaseous production analysis of reforming 79
Chapter 5 Conclusions and Future work 82
5.1 Conclusions 82
5.2 Future work 85
References 86
Vita 145

參考文獻 [1] Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renew Sustain Energy Rev 2012; 16:3024-33.
[2] Zhao H. Advanced Direct Injection Combustion Engine Technologies and Development, 1st ed: Cambridge, United Kingdom :CRC Press Woodhead Publishing 2010.pp.543-61
[3] Ashida K, Maeda H, Araki T, Hoshino M. Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine. SAE Int. J. Fuels Lubr. 2015,2:358-66
[4] Ke L., Cbunsban S., Velu S. Hydrogen and syngas production and purification technologies. , 1st ed, Chicester: John Wiley & Sons Ltd. 2010. p.4 -5.
[5] Boon J, van Dijk E, de Munck S, van den Brink R. Steam reforming of commercial ultra-low Sulphur diesel. J power source 2011; 196:5928-35.
[6] Shiratori Y, Quang-Tuyen T, Umemura Y. Kitaoka T, Sasaki K, Paper-structured catalyst for the steam reforming of biodiesel fuel. Int J Hydrogen Energy 2013; 38:11278-87.
[7] Martin S, Kraaij G,Ascher T, Wails D, Wörner A. An experimental investigation of biodiesel steam reforming. Int J Hydrogen Energy 2015; 40:95-105.
[8] Adhikari S, Fernando SD, Haryanto A. Hydrogen production from glycerol: an update. Energy Convers Manage 2009; 50:2600-4.
[9] Subramanian R, Schmidt LD. Renewable olefins from biodiesel by autothermal reforming. Angew Chem Int Ed Engl 2004; 44(2):302-5.
[10] Cheekatamarla PK, Finnerty CM. Synthesis gas production via catalytic partial oxidation reforming of liquid fuels. Int J Hydrogen Energy 2008; 33:5012-9.
[11] Araújo CDM, Andrade CC, Silva E, Dupas FA. Biodiesel production from used cooking oil: A review. Renew & Sustain Energy Rev 2013; 27:445-52
[12] Demirbas A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manage 2008;49:125-30
[13] Knothe, G. Biodiesel and renewable diesel: A comparison. Prog. Energy Combust. Sci. 2010; 36:364-73.
[14] Huang D, Haining Zhou H, Lin L. Biodiesel: an Alternative to Conventional Fuel. Energy Procedia 2012; 16:1874-85
[15] Tsolakis, A, Megaritis A. Partially premixed charge compression ignition engine with on-board H2 production by exhaust gas fuel reforming of diesel and biodiesel. Int J Hydrogen Energy 2005; 30:731-45.
[16] Nahar GA, Hydrogen rich gas production by the autothermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: A thermodynamic analysis, Int J Hydrogen Energy 2010; 35:8891-8911.
[17] Martin S, Worner A. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: comparison of autothermal reforming and steam reforming. J Power Sources 2011;196:3163-71.
[18] Nahar GA, Dupont V, Martyn V. Twigg, Dvininov E. Feasibility of hydrogen production from steam reforming of biodiesel (FAME) feedstock on Ni-supported catalysts. Appl Catal B Environ 2015; 168-169:228-42.
[19] Martin S, Kraaij G, Ascher T, Karagiannakis G, Baltzopoulou P, Wails D, Wörner A. Direct steam reforming of diesel and diesel–biodiesel blends for distributed hydrogen generation. Int J Hydrogen Energy 2015; 40:75-84.
[20] Noureddine H, Nahla F, Zouhour K, Marie-Noëlle P. Thermodynamic analysis of hydrogen production by steam and autothermal reforming of soybean waste frying oil. Energy Convers Manage 2013; 70:174-86.
[21] Kraaij GJ, Specchia S, Bollito G, Mutri L, Wails D. Biodiesel fuel processor for APU applications. Int J Hydrogen Energy 2009; 34:4495-9.
[22] Lin J, Trabold T A, Walluk M R, Smith D F. Bio-fuel reforming for solid oxide fuel cell applications Part 2: Biodiesel. Int J Hydrogen Energy 2014; 39:183-95.
[23] Lin J, Trabold T A, Walluk M R, Smith D F. Bio-fuel reforming for solid oxide fuel cell applications. Part 3: Biodiese-diesel blends. Int J Hydrogen Energy 2014; 39:196-208.
[24] Holmgren J, Gosling C, Marinangeli R, Marker T, Faraci G, Perego C. New developments in renewable fuels offer more choices. Hydrocarb Process 2007;86: 67–74
[25] Prokopowicz A, Zaciera M, Sobczak A, Bielaczyc P, Woodburn J. The Effects of Neat Biodiesel and Biodiesel and HVO Blends in Diesel Fuel on Exhaust Emissions from a Light Duty Vehicle with a Diesel Engine. Environ Sci Technol 2015; 49:7473-82
[26] Arvidsson R, Persson S, Froling M, Svanstrom M. Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J Clean Prod 2010;19:129-37.
[27] Kim D, Kim S, Oh S, No SY. Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel 2014;125:36-43
[28] Millo F, Debnath BK, Vlachos T, Ciaravino C, Postrioti L, Buitoni c G. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel 2015;159:614-27
[29] Kim D, Kim S, Oh S, No SY. Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel 2014;125:36-43
[30] European Commission (EC). Directive (EU) 2009/28/EC of the European Parliament and of the Council of 23 April 2009. European Commission: Brussels, Belgium, 2009.
[31] Flach B, Lieberz S, Rossetti A. EU Biofuels Annual 2017. GAIN Report 2017.p33
[32] Lopes ML, Paulillo SCL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, Amorim Neto HB, Amorim HV. Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol. 2016;45s:64-76.
[33] CropEnergies AG. http://www.cropenergies.com/en/Bioethanol/Markt/Dynamisches_Wachstum/ ; 2017 [accessed 12 December 2017]
[34] Ziolkowska JR. Prospective technologies, feedstocks and market innovations for ethanol and biodiesel production in the US. Biotech Report 2014;4:94-8.
[35] Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 2017; 71:475-501.
[36] AFDC, U.S. Department. https://www.afdc.energy.gov/fuels/ethanol_benefits.html. 2017 [accessed 15 December 2017]
[37] Anderson J.E., DiCicco D.M., Ginder J.M., Kramer U., Leone T.G., Raney-Pablo H.E., Wallington T.J. High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United StatesFuel 2012; 97:585-94.
[38] Manochioa C, Andradea BR, Rodrigueza RP, Moraes BS. Ethanol from biomass: A comparative overview. Renew Sustain Energy Rev 2017; 80:743-55.
[39] Meng N, Dennis YCL, Michael KHL. A review on reforming bioethanol for hydrogen production. Int J Hydrogen Energy 2007; 32:3238-47.
[40] Oliveira VB, Pereira JP, Pinto AMFR. Modeling of passive direct ethanol fuel cells. Energy 2017; 133:652-65.
[41] Tippawan P, Im-Orb K, Arpornwichanop A. Efficient heat allocation in the two-step ethanol steam reforming and solid oxide fuel cell integrated process. Energy 2017; 133:545-56.
[42] Kralevaa E, Pohla MM, Jürgensenb A, Ehricha H. Hydrogen production by bioethanol partial oxidation over Ni based catalysts. Appl Catal B Envir 2015;179:509-20.
[43] Lee JS, Han GB, Kang M. Low temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts. Energy 2012; 248-56.
[44] Nissan SOFC powered vehicle system runs on bioethanol. Fuel Cells Bulletin 2016; 7:2-3.
[45] Wang WJ, Wang YQ. Dry reforming of ethanol for hydrogen production: thermodynamic investigation. Int J Hydrogen Energy 2009; 34:5382–89.
[46] Liu S, Zhang K, Fang L, Li Y. Thermodynamic analysis of hydrogen production from oxidative steam reforming of ethanol. Energy Fuels 2008; 22:1365-70.
[47] Shaohui S, Wei Y, Peiqin S, Junwu C. Thermodynamic analysis of ethanol reforming for hydrogen production. Energy 2012; 44:911-24.
[48] Ávila CN, Hori CE, Assis AJ. Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions . Energy 2011; 36:4385-95.
[49] Graschinsky C, Giunta P, Amadeo N, Laborde M. Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol. Int J Hydrogen Energy 2012; 37:10118-24.
[50] Chen HQ, Yu H, Tang Y, Pan MQ, Yang GX, Peng F, Wang HJ, Yang J. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. J Nat Gas Chem 2009; 18:191-8.
[51] Cai WJ, Wang FG, Veen ACV, Provendier H, Mirodatos C, Shen WJ. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catal Today 2008; 138:152-6.
[52] Chiu WC, Horng RF, Chou HM. Hydrogen production from an ethanol reformer with energy saving approaches over various catalysts. Int J Hydrogen Energy 2013; 38:2760-69.
[53] Baruah R, Dixit M, Basarkar P, Parikh D, Bhargav A. Advances in ethanol autothermal reforming. Renew & Sustain Energy Rev 2015; 51:1345-53.
[54] CropEnergies AG. http://www.cropenergies.com/en/Bioethanol/Markt/Dynamisches_Wachstum/ ; 2018 [accessed 13 February 2018].
[55] Hossain. M.Z, Jaya N, Akter S, Amru A.N.B, Golam F. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev 2017; 71: 475-501
[56] Jin C, Yao M, Liuc H, Fon C, Lee F, Ji J. Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 2011; 15:4080–106.
[57] Dernotte J, Mounaim-Rousselle C, Halter F, Seers P. Evaluation of butanol gasoline blends in a port fuel-injection, spark-ignition engine. Int J Energy Environ Eng 2010; 65:345–51.
[58] Rakopoulos DC, Rakopoulos CD, Giakoumis E, Dimaratos AM, Kyritsis DC. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers Manag 2010; 51:1989–97.
[59] Rakopoulos DC. Investigation of the performance and emissions of bus engine operating on butanol/ diesel fuel blends. Fuel 2010; 89:2781-2790.
[60] Rajesh K. B, Saravanan S. Use of higher alcohol biofuels in diesel engines: a review. Ren Sus Energy Rev 2016; 60:84–115
[61] Nahar GA, Madhani SS. Thermodynamics of hydrogen production by the steam reforming of butanol: analysis of inorganic gases and light hydrocarbons. Int J Hydrogen Energy 2010;35:98-109.
[62] Horng RF, Lai MP, Chui WC, Huang WC. Thermodynamic analysis of syngas production and carbon formation on oxidative steam reforming of butanol. Int J Hydrogen Energy 2016; 41:889-96.
[63] Wang WJ. Hydrogen production via dry reforming of butanol: Thermodynamic analysis. Fuel 2011; 90: 1681-88.
[64] Huang LH, Zhou J, Hsu AT, Chen RR. Catalytic partial oxidation of n-butanol for hydrogen production over LDH derived Ni-based catalysts. Int J Hydrogen Energy 2013; 38:14550-8.
[65] Heikki H, Juha L, Leon L. Steam- and autothermal-reforming of n-butanol over Rh/ZrO2 catalyst. Catal Today 2015; 244: 47–57.
[66] Hartley UW, Amornraksa S, Kim-Lohsoontorn P, Laosiripojana N. Thermodynamic analysis and experimental study of hydrogen production from oxidative reforming of n-butanol. Chem Eng J 2015; 278: 2–12.
[67] Bimbela F, Oliva M, Ruiz J, Carcia L, Arauzo J .Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fixed bed: Acetol and n-butanol. J Anal Appl Pyrolysis 2009;85:204-13.
[68] Cai WJ, Piscina PR, Homs N. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts. Bioresour Technol 2012; 107:482-6.
[69] Chakrabarti R, Kruger JS, Hermann RJ, Schmidt LD. Autothermal reforming of isobutanol. RSC Adv. 2012; 2:2527-33
[70] Rollinson AN, Jones J, Dupont V, Twigg MV. Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 2011; 4:1216-24.
[71] Lan R, Tao S, Irvine JTS. A direct urea fuel cell-power from fertiliser and waste. Energy Environ Sci 2010;3:438.
[72] Matijaševic L, Dejanovic I, Lisac H. Treatment of wastewater generated by urea production. Resour Conserv Recy 2010; 54:149-54.
[73] Department of Chemistry, University of York, UK. The essential chemical industry-online, http://www.essentialchemicalindustry.org/chemicals/urea.html; 2017 [accessed 21 December 2017]
[74] Yim SD, Kim SJ, Baik JH, Nam IS, Mok YS, Lee JH, Cho BK, Oh SH. Decomposition of Urea into NH3 for the SCR Process. Ind Eng Chem Res 2004; 43:4856-63.
[75] Satyapol S, Petrovic J, Read C, Thomas G, Ordaz, G. The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 2007; 120:246-56.
[76] Rollinson AN, Dupont V, Rickett GL, Twigg MV. Hydrogen Production by Catalytic Steam Reforming of Urea. 5th International Ege Energy Symposium and Exhibition (IEESE-5) Pamukkale University, Turkey, 2010.
[77] Furukawa S, Suzuki R, Ochi K, Yashima T, Komatsu T. Hydrogen Production from Aqueous Solutions of Urea with Ruthenium-based Catalysts. ChemSusChem 2015; 8:2028-30.
[78] Giovanni C, Umberto D. SOFC fuelled with reformed urea. Appl Energy 2015; 154:242-53.
[79] Zheng F, Yong HK, Xu Y, Wei X, Zucheng W. In-situ production of hydrogen peroxide as oxidant for direct urea fuel cell. Energy Procedia 2017; 105:1858–63.
[80] Antti R. Outokumpu HSC Chemistry for Windows, Version 5.1. Finland 2002.
[81] Kroschowitz, J.I. (ed). Kirk-Othmer encyclopedia of chemical technology, 4th ed: 13, New York, Chichester: John Wiley & Sons Ltd. 1998. p.838 -894.
[82] Horng RF, Lai MP, Lai WH. The assessment of reformation in a porous medium-catalyst hybrid reformer under excess enthalpy condition, Int J Hydrogen Energy. 2012;37:14114-23
[83] Abernethy RB, Benedict RP, Dowdell RB. ASME measurement uncertainty. Trans ASME: J Fluids Eng 1985;107: 161-4
[84] Parmar RD, Kundu A, Karan K. Thermodynamic analysis of diesel reforming process: Mapping of carbon formation boundary and representative independent reactions. J Power Sources 2009; 194:1007-20.
[85] Faungnawakij K, Kikuchi R, Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. J Power Sources 2007; 164:73-9.
[86] Oliveira L.E., Da Silva M. L. C. P. Comparative study of calorific value of rapeseed, soybean, jatropha curcas and crambe biodiesel. International Conference on Renewable Energies and Power Quality (ICREPQ’13), Spain,2013
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw