進階搜尋


下載電子全文  
系統識別號 U0026-2308201909092100
論文名稱(中文) 以螢光非等向性方法檢視類乙醇體陰陽離子液胞的雙層膜堅硬度-乙醇及膽固醇效應探討
論文名稱(英文) Examining bilayer rigidity of ethosome-like catanionic vesicles containing cholesterol by using the fluorescence anisotropy method-Ethanol and cholesterol effects
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 張詰苡
研究生(英文) Chieh-Yi Chan
學號 N36064115
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 指導教授-楊毓民
口試委員-梁家華
口試委員-邱繼正
口試委員-林宏殷
中文關鍵字 陰陽離子界面活性劑  類乙醇體陰陽離子液胞  經皮藥物傳輸  半自發製程  雙層膜堅硬度  螢光非等向性方法  乙醇效應  膽固醇效應  液胞穩定性 
英文關鍵字 Catanionic surfactant  Catanionic vesicle  Transdermal drug delivery  Semi-spontaneous fabrication process  Bilayer rigidity  Fluorescence anisotropy  Ethanol effect  Cholesterol effect  Vesicle stability 
學科別分類
中文摘要 陰陽離子界面活性劑(或稱離子對雙親分子)具有來源豐富、價格便宜、高化學穩定性及分子可設計性等優點,極有潛力做為製備類脂質體的材料。本研究運用螢光非等向性方法測定由陰陽離子界面活性劑DeTMA-TS (decyltrimethylammonium-tetradecylsulfate, C10-C14)經半自發製程形成的類乙醇體陰陽離子液胞雙層膜的堅硬度,檢視乙醇及膽固醇的影響及其做為經皮藥物傳輸載體的可行性。由螢光非等向性溫度圖譜實驗結果顯示,一方面增加乙醇濃度可以降低類乙醇體陰陽離子液胞的雙層膜堅硬度;另一方面增加膽固醇濃度則會提升雙層膜的堅硬度。本研究也探討乙醇及膽固醇對類乙醇體陰陽離子液胞穩定性的影響,結果顯示,膽固醇可以有效提升類乙醇體陰陽離子液胞的穩定性,並擴展乙醇共溶劑使用的濃度範圍。本研究並進一步測定在最適化配方組成下的DeTMA-TS類乙醇體陰陽離子液胞雙層膜的堅硬度,顯示相對於DPPC (dipalmitoylphosphatidylcholine, C16-C16 )乙醇體,具有較小的堅硬度,更適於做為穩定可變形的經皮藥物傳輸載體。
英文摘要 Due to their abundant sources, low cost, high chemical stability and molecular designability, lipid-like catanionic surfactants (also known as ion-pair amphipliles, IPAs) have emerged as attractive materials to prepare potential vesicular carriers in drug and gene delivery. In this work, bilayer rigidity of ethosome-like catanionic vesicles fabricated from decyltrimethylammonium-tetradecylsulfate (DeTMA-TS) through a semi-spontaneous process was systematically studied by using fluorescence polarization technique . By examining ethanol and cholesterol (CHOL) effects on the fluorescence anisotropy (FA) of vesicular bilayers and physical stability of vesicles, possible applications of ethosome-like catanionic vesicles as stable and deformable transdermal drug delivery carriers were then evaluated. The experimental FA thermograms showed that FA of ethosome-like catanionic vesicle bilayers was decreased with increasing ethanol concentration on the one hand, it was monotonically increased with increasing of CHOL concentration on the other hand. Moreover, addition of CHOL was found to effectively enhance the physical stability and broaden the ethanol concentration window of ethosome-like catanionic vesicles. For the optimal formulations, lower bilayer rigidity was exhibited by the stable DeTMA-TS ethosome-like catanionic vesicles as compared with that of dipalmitoylphosphatidylcholine (DPPC) ethosomes. Feasibility of the use of ethosome-like catanionic vesicles is justified.
論文目次 摘要 I
Extended Abstract II
總目錄 XVI
表目錄 XIX
圖目錄 XXI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 8
第二章 文獻回顧 10
2-1 陰陽離子界面活性劑 10
2-1-1陰陽離子液胞的形成 11
2-1-2陰陽離子液胞的結構型態 13
2-2 乙醇體 15
2-3 乙醇體的物理穩定性 17
18
2-3-1 乙醇效應 19
2-3-2 膽固醇效應 21
2-4 乙醇體的雙層膜特性 22
2-4-1 乙醇效應 22
2-4-2 膽固醇效應 26
2-5 乙醇體在經皮藥物傳輸的應用 29
2-6 螢光非等向性測量原理 31
第三章 實驗 33
3-1 實驗藥品 34
3-2 實驗儀器及裝置 36
3-2-1 均質機 (Homogenizier) 36
3-2-2 動態雷射光散儀 (Dynamic Light Scattering, DLS) 37
3-2-3 螢光光譜儀 41
3-2-4 電子控溫裝置 44
3-3 實驗方法 45
3-3-1 陰陽離子界面活性劑 (IPA) 製備 45
3-3-2 類乙醇體陰陽離子液胞的製備 46
3-3-3 粒徑分布、界面電位與液胞存活期的測量 47
3-3-4 液胞雙層膜之螢光非等向性的測量 49
第四章 結果與討論 50
4-1 類乙醇體液胞之物理穩定性 51
4-1-1 陰陽離子界面活性劑 (IPA) 之濃度影響 51
4-1-2 水溶液與緩衝溶液之比較 54
4-1-3 乙醇效應 58
4-1-4 膽固醇效應 60
4-2 類乙醇體液胞之雙層膜堅硬度-乙醇效應 65
4-2-1 純乙醇效應 65
4-2-2 添加膽固醇之乙醇效應 69
4-3 類乙醇體液胞之雙層膜堅硬度-膽固醇效應 73
4-4 類乙醇體陰陽離子液胞與乙醇體之比較 78
第五章 結論與建議 81
5-1 結論 81
5-2 建議 83
參考文獻 84
參考文獻 1. Jesorka, A.; Orwar, O., Liposomes : technologies and analytical applications, Annu. Rev. Anal. Chem. 2008, 27, 1-32.
2. Gregoriadis, G. (Ed.), Liposomes as Drug Carriers: Recent Trends and Progress, Wiley, New York, 1988.
3. New, R. R. C. (Ed.), Liposomes: A Pratical Approach, Oxford, New York, 1990.
4. Lasic, D. D. (Ed.), Liposomes: from Physics to Applications, Elsevier, New York, 1993.
5. Chung, Y. C.; L., R. S., Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants. Langmuir 1993, 9, 1937-1939.
6. Blandamer, M. J.; Briggs, B.; Cullis, P. M.; Engberts, J. B. F. N., Gel to liquid-crystal transitions in synthetic amphiphile vesicles. Chem. Soc. Rev. 1995, 24 (4), 251-257.
7. Bhattacharya, S.; Haldar, S., The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochim. Biophys. Acta. 1996, 1283, 21-30.
8. Kaler, E. W.; Murthy, A. K., Rodriguez, B. E., Zasadzinski, J. A., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science 1989, 245, 1371-1374.
9. Yu, W. Y.; Yang, Y. M.; Chang, C. H., Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures, Langmuir 2005, 21, 6185-6193.
10. Tondre, C.; Caillet, C., Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis, Adv. Colloid Interf. Sci. 2001, 93, 115-134.
11. Bramer, T.; Dew, N.; Edsman, K., Pharmaceutical applications for catanionic mixtures, J. Pharm. Pharmac. 2007, 59, 1319-1334.
12. Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I., Drug delivery by soft matter: matrix and vesicular carriers, Angew. Chem. Int. Ed. 2009, 48, 274-288.
13. Dhawan, V. V.; Nagarsenker, M.S., Catanionic systems in nanotherapeutics – Biophysical aspects and novel trends in drug delivery applications, J. Control. Release 2017, 266, 331-345.
14. Koehler, R. D.; Raghavan, S. R., Kaler, E. W., Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants, J. Phys. Chem. B 2000, 104, 11035-11044.
15. Lee, J. H.; Gustin, J. P.; Chen, T.; Payne, G. F.; Raghavan, S. R., Vesicle-biopolymer gels: networks of surfactant vesicles connected by associating biopolymers, Langmuir 2005, 21, 26-33.
16. Marques, E. F.; Regev, O.; Khan, A.; Lindman, B., Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects. Adv. Colloid Interf. Sci. 2003, 100-102, 83-104.
17. Chien, C. L.; Yeh, S. J.; Yang, Y. M.; Chang, C. H., Formation and encapsulation of catanionic vesicles. J. Chin. Colloid Interf. Soc. 2002, 24, 31-45.
18. Yeh, S. J.; Yang, Y. M.; Chang, C. H., Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles. Langmuir 2005, 21, 6179-6184.
19. Lee, W. H.; Tang, Y. L.; Chiu, T. C.; Yang, Y. M., Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers. J. Chem. Eng. Data 2015, 60, 1119-1125.
20. Wu, K. C.; Huang, Z. L.; Yang, Y. M.; Chang, C. H., Chou, T. H., Enhancement of catansome formation by means of cosolvent effect: Semi-spontaneous preparation method, Colloid Surf. A 2007, 320, 599-607.
21. Huang, Z. L.; Hong, J. Y.; Chang, C. H.; Yang, Y. M., Gelation of charge catanionic vesicles prepared by a semispontaneous process, Langmuir 2010, 26 (4), 2374-2382.
22. Liu, Y. S.; Wen, C. F.; Yang, Y. M., Development of ethosome-like catanionic vesicles for dermal drug delivery. J. Taiwan Inst. Chem. Engrs. 2012, 43, 830-838.
23. Chiu, C. W.; Chang, C. H.; Yang, Y. M., Ethanol effects on the gelation behavior of α-tocopherol acetateencapsulated ethosomes with water-soluble polymers, Colloid Polym. Sci. 2013, 291, 1341-1352.
24. Chiu, C. W.; Chang, C. H.; Yang, Y. M., Gelation of ethosome-like catanionic vesicles by water-soluble polymers: Ethanol and cholesterol effects, Soft Matter 2013, 9, 7628-7636.

25. Liu, Y. S.; Wen, C. F.; Yang, Y. M., Cholesterol effects on the vesicular membrane rigidity and drug encapsulation efficiency of ethosome-like catanionic vesicles, Sci. Adv. Mater. 2014, 6, 954-962.
26. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4 (2), 145-160.
27. Elsayed, M. M.; Abdallah, O. Y.; Naggar, V. F.; Khalafallah, N. M., Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm. 2007, 332 (1-2), 1-16.
28. Cevc, G., Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004, 56 (5), 675-711.
29. Cevc, G.; Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta. 1992, 1104, 226-232.
30. Touitou, E.; Dayana, N.; Bergelsonb, L.; Godina, B.; Eliaza, M., Ethosomes novel vesicular carriers for enhanced delivery. J. Control. Release 2000, 65, 403-418.
31. 王俊為, 單一雙層陰陽離子液胞的水溶性藥物包覆效率之理論與實驗比較研究-乙醇及膽固醇效應, 成功大學化學工程學系碩士學位論文, 2018.
32. Scott, A.B.; Tartar, H.V.; Lingafelter, E.C., Electrolytic properties of aqueous solutions of octyltrimethylammonium octanesulfonate and decyltrimethylammonium decaneanesulfonate. J. Am. Chem. Soc. 1943, 65, 698-701.
33. Jokela, P.; Jonsson, B.; Khan, A., Phase equilibrium of catanionic surfactant-water systems. J. Phys. Chem. 1987, 91, 3291-3298.
34. Khan, A.; Marques, E., (Robb, I.D. Ed.) Catanionic surfactants: Chap. 3 in Specialist Surfactants, Chapman and Hall, U.K., 1997.
35. Israelachvili, J. N., (3rd Ed.) Intermolecular and surface forces, Elsevier Inc., USA. 2011.
36. Lasic, D. D., The mechanism of vesicle formation. Biochem. J. 1988, 256, 1-11
37. Fukuda, H.; Kawata, K.; Okuda, H., Bilayer-forming ion-pair amphiphiles from single-chain surfactants. J. Am. Chem. Soc. 1990, 112, 1635-1637.
38. Barry, J. A.; Gawrisch, K., Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry 1994, 33, 8082-8088.
39. Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B. W.; Holopainen, J.; Karttunen, M., Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys. J. 2006, 90, 1121-1135.
40. Petrache, H. I.; Zemb, T.; Belloni, L.; Parsegian, V. A., Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc. N. A. S. 2006, 103, 7982-7987.
41. Evans, E.; Needham, D., Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 1987, 91, 4219-4228.
42. Grasso, D.; Subramaniam, K.; Butkus, M.; Strevett, K.; Bergendahl, J., A review of non-DLVO interactions in environmental colloidal systems. Rev. Env. Sci. Bio. 2002, 1 (1), 17-38.
43. Sabın, J.; Prieto, G.; Ruso, J.; Hidalgo-Alvarez, R.; Sarmiento, F., Size and stability of liposomes: a possible role of hydration and osmotic forces. Eur. Phys. J. E: Soft Matter 2006, 20 (4), 401-408.
44. Brown, M. F.; Thurmond, R. L.; Dodd, S. W.; Otten, D.; Beyer, K., Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J. Am. Chem. Soc. 2002, 124 (28), 8471-8484.
45. Walz, J. Y.; Ruckenstein, E., Comparison of the van der Waals and ndulation interactions between uncharged lipid bilayers. J. Phys. Chem. B 1999, 103 (35), 7461-7468.
46. Chanturiya, A.; Leikina, E.; Zimmerberg, J.; Chernomordik, L. V., Short-Chain Alcohols Promote an Early Stage of Membrane Hemifusion. Biophysical J. 1999, 77, 2035-2045.
47. Ly, H. V.; Block, D. E.; Longo, M. L., Interfacial tension effect of ethanol on lipid bilayer rigidity, stability, and area/molecule: a micropipette aspiration approach. Langmuir 2002, 18, 8988-8995.
48. Zhang, X. R.; Huang, J. B.; Mao, M.; Tang, S. H.; Zhu, B. Y., From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents. Colloid Polym. Sci. 2001, 279, 1245-1249.
49. Deme´, B.; Dubois, M.; Zemb, T., Swelling of a lecithin lamellar phase induced by small carbohydrate solutes. Biophysical J. 2002, 82, 215-225.
50. Bin, X.; Lipkowski, J., Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au(111) electrode. J. Phys. Chem. B 2006, 110, 26430-26441.
51. Cevc, G., Hydration force and the interfacial structure of the polar surface, J. Chem. Soc. 1991, 87, 2733-2739.
52. McIntosh, T. J.; Magid, A. D.; Simons, S. A., Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry 1989, 28, 17-25.
53. Toppozini, L.; Armstrong, C. L.; Barrett, M. A.; Zheng, S.; Luo, L.; Nanda, H.; Sakai, V. G.; Rheinstädter, M. C., Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by X-ray and neutron scattering. Soft Matter 2012, 8, 11839-11849.
54. Bach, D.; Borochov, N.; Wachtel, E., Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine–cholesterol bilayer membranes. Chem. Phys. Lipids 2002, 114, 123-130.
55. Huang, C.; McIntosh, T., Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines. Biophys. J. 1997, 72, 2702-2709.
56. Komatsu, H.; Rowe, E. S., Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry 1991, 30, 2463-2470.
57. Li, S.; Lin, H.; Wang, G.; Huang, C., Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines. Biophys. J. 1996, 70, 2784-2794.
58. Roth, L. G.; Chen, C. H., Thermodynamic elucidation of ethanol-induced interdigitation of hydrocarbon chains in phosphatidylcholine bilayer vesicles. J. Phys. Chem. C 1991, 95, 7955-7959.
59. Rowe, E. S.; Cutrera, T. A., Differential scanning calorimetric studies of ethanol interactions with distearoylphosphatidylcholine: transition to the interdigitated phase. Biochemistry 1990, 29, 10398-10404.
60. Slater, S. J.; Ho, C.; Taddeo, F. J.; Kelly, M. B.; Stubbs, C. D., Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry 1993, 32, 3714-3721.
61. Wachtel, E.; Borochov, N.; Bach, D.; Miller, I., The effect of ethanol on the structure of phosphatidylserine bilayers. Chem. Phys. Lipids 1998, 92, 127-137.
62. Zeng, J.; Smith, K. E.; Chong, P., Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Biophys. J. 1993, 65, 1404-1414.
63. El Khoury, E.; Patra, D., Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. J. Photochem. Photobiol., B 2016, 158, 49-54.
64. Barry, J. A.; Gawrisch, K., Effects of Ethanol on Lipid Bilayers Containing Cholesterol, Gangliosides, and Sphingomyelin. Biochemistry 1995, 34, 8852-8860.
65. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys. J. 2006, 91, 3327-3340.
66. Aramaki, K.; Watanabe, Y.; Takahashi, J.; Tsuji, Y.; Ogata, A.; Konno, Y., Charge boosting effect of cholesterol on cationic liposomes. Colloid Surf. A-Physicochem. Eng. Asp. 2016, 506, 732-738.
67. Benesch, M. G.; Lewis, R. N.; Mannock, D. A.; McElhaney, R. N., A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015, 187, 34-49.
68. Benesch, M. G.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 2015, 191, 123-135.
69. Benesch, M. G.; McElhaney, R. N., A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BBA-Rev. Biomembranes 2014, 1838, 1941-1949.

70. Blandamer, M. J.; Briggs, B.; Cullis, P. M.; Rawlings, B. J.; Engberts, J. B., Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC. Phys. Chem. Chem. Phys. 2003, 5, 5309-5312.
71. El Maghraby, G.; Williams, A. C.; Barry, B., Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int. J. Pharm. 2004, 276, 143-161.
72. Fritzsching, K. J.; Kim, J.; Holland, G. P., Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13 C solid-state NMR. BBA-Rev. Biomembranes 2013, 1828, 1889-1898.
73. Halling, K. K.; Slotte, J. P., Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. BBA-Rev. Biomembranes 2004, 1664, 161-171.
74. Konno, Y.; Naito, N.; Yoshimura, A.; Aramaki, K., A study on the formation of liquid ordered phase in lysophospholipid/cholesterol/1, 3-butanediol/water and lysophospholipid/ceramide/1, 3-butanediol/water systems. J. Oleo Sci. 2014, 63, 823-828.
75. Krause, M. R.; Wang, M.; Mydock-McGrane, L.; Covey, D. F.; Tejada, E.; Almeida, P. F.; Regen, S. L., Eliminating the roughness in cholesterol’s β-face: does it matter? Langmuir 2014, 30, 12114-12118.
76. Krivanek, R.; Okoro, L.; Winter, R., Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys. J. 2008, 94, 3538-3548.
77. L nnfors, M.; Engberg, O.; Peterson, B. R.; Slotte, J. P., Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes. Langmuir 2011, 28, 648-655.
78. Malcolmson, R.; Higinbotham, J.; Beswick, P.; Privat, P.; Saunier, L., DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol. J. Mem. Sci. 1997, 123, 243-253.
79. Mannock, D. A.; Lee, M. Y.; Lewis, R. N.; McElhaney, R. N., Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. BBA-Rev. Biomembranes 2008, 1778, 2191-2202.
80. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BBA-Rev. Biomembranes 2010, 1798, 376-388.
81. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophys. J. 2000, 79, 2056-2065.
82. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. BBA-Rev. Biomembranes 2009, 1788, 345-357.
83. Silva, C.; Aranda, F. J.; Ortiz, A.; Martínez, V.; Carvajal, M.; Teruel, J. A., Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach. J. Colloid Interf. Sci. 2011, 358, 192-201.
84. Stillwell, W.; Dallman, T.; Dumaual, A. C.; Crump, F. T.; Jenski, L. J., Cholesterol versus α-tocopherol: Effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry 1996, 35, 13353-13362.
85. Zhao, L.; Feng, S.-S.; Kocherginsky, N.; Kostetski, I., DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. Int. J. Pharm. 2007, 338, 258-266.
86. Alenaizi, R.; Radiman, S.; Rahman, I. A.; Mohamed, F., Zwitterionic betaine transition from micelles to vesicles induced by cholesterol. J. Mol. Liq. 2016, 223, 1226-1233.
87. Bhattacharya, S.; Haldar, S., The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. BBA-Rev. Biomembranes 1996, 1283, 21-30.
88. Bhattacharya, S.; Haldar, S., Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. BBA-Rev. Biomembranes 2000, 1467, 39-53.
89. Bui, T. T.; Suga, K.; Umakoshi, H., Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. Langmuir 2016, 32, 6176-6184.
90. Daly, T. A.; Wang, M.; Regen, S. L., The origin of cholesterol’s condensing effect. Langmuir 2011, 27, 2159-2161.
91. Krause, M. R.; Turkyilmaz, S.; Regen, S. L., Surface occupancy plays a major role in cholesterol’s condensing effect. Langmuir 2013, 29, 10303-10306.
92. Fournier, I.; Barwicz, J.; Auger, M.; Tancrède, P., The chain conformational order of ergosterol-or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study. Chem. Phys. Lipids 2008, 151, 41-50.
93. Severcan, F.; Baykal, Ü.; Süzer, Ş., FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region. Fresenius' Anal. Chem. 1996, 355, 415-417.
94. Berkowitz, M. L., Detailed molecular dynamics simulations of model biological membranes containing cholesterol. BBA-Rev. Biomembranes 2009, 1788, 86-96.
95. Smondyrev, A. M.; Berkowitz, M. L., Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophys. J. 2001, 80, 1649-1658.
96. Yang, J.; Martí, J.; Calero, C., Pair interactions among ternary DPPC/POPC/cholesterol mixtures in liquid-ordered and liquid-disordered phases. Soft Matter 2016, 12, 4557-4561.
97. de Meyer, F.; Smit, B., Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3654-3658.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw