進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201900461800
論文名稱(中文) 瑞士捲反應器內甲烷部分氧化及以超音噴霧進行甲醇部分氧化之操作最佳化
論文名稱(英文) Operation optimization of methane partial oxidation in a Swiss-roll reactor and methanol partial oxidation using ultrasonic sprays
校院名稱 成功大學
系所名稱(中) 能源工程國際碩士學位學程
系所名稱(英) International Master Degree Program on Energy Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 邱國倫
研究生(英文) Guo-Lun Chiu
學號 p06061015
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 指導教授-陳維新
口試委員-張敏興
口試委員-簡瑞與
口試委員-盧科妙
中文關鍵字 甲烷催化部分氧化(CPOM)  螺旋瑞士捲反應器  田口法  反應曲面法(RSM)  合成氣產率  ANOVA  甲醇部分氧化(POM)  h-BN-Pt / Al2O3觸媒  超音波噴霧系統  產氫。 
英文關鍵字 Catalytic partial oxidation of methane (CPOM)  Spiral Swiss-roll reactor  Taguchi method  Response surface methodology (RSM)  Syngas yield  Analysis of variance (ANOVA)  Partial oxidation of methanol (POM)  h-BN-Pt/Al2O3 catalyst  Ultrasonic sprays system  Hydrogen production 
學科別分類
中文摘要 氫能是一種具備高比能與高效率的清潔能源技術。在本研究中,綜合分析在不同反應器對甲烷催化部分氧化 (Catalytic Partial Oxidation of Methane, CPOM)或甲醇的部分氧化 (Partial Oxidation of Methanol, POM)機制下產氫之探討,並最佳化了化學反應中的操作條件。因此,在該研究分為兩部分。
在第一部分研究銠觸媒在螺旋狀瑞士捲反應器中進行CPOM的特性。使用最佳化工具田口法 (Taguchi method)和反應曲面法 (Response Surface Methodology, RSM)探討合成氣的產率,以及空氣時速 (Gas Hourly Space Velocity, GHSV)、氧氣與甲烷比 (O2/C ratio)和二氧化碳與氧氣比 (CO2/O2 ratio)三個操作條件的最佳組合。在第一階段使用田口法進行最佳化,結果顯示,其中操作因子對合成氣產率的影響依序為O2/C比 > CO2/O2比 > GHSV。根據田口法最佳化結果顯示,最大氫氣產率為2.24 mol (mol CH4)-1。第二階段最佳化中,基於第一階段最佳化範圍所得知,縮小參數範圍的同時獲得更準確的合成氣產率。在RSM與變異數分析(ANOVA)結果顯示反應曲面回歸模型,並指出因子GHSV和因子GHSV和O2/C比的回歸係數較為顯著。根據第二階段RSM最佳化的Box-Behnken實驗設計顯示,合成氣產量在2.31 mol (mol CH4)-1為最佳情況。研究結果顯示,兩階段最佳化(田口法和反應曲面法)的合成氣產率優於僅有一階段(田口法)的最佳化,且能將合成氣產量提升至5.15%最佳情況。因此,建議進行兩階段最佳化能夠得出最好合成氣產率與組合。
在本研究的第二部分,使用超音噴霧系統並使用POM機制來探索氫氣的生產。冷啟動可以觸發POM機制並使用具有超低Pt含量(0.2 wt%)的h-BN-Pt / Al2O3觸媒進行實驗。透過反應曲面法(RSM)找出最佳氫氣產量,以找出O2/C比,甲醇流速和GHSV的最佳控制參數組合。可以發現與傳統的噴霧系統相比,超音噴霧系統可以均勻地噴灑甲醇並提高製氫產率。結果可以得出,在較高的O2/C比能提高甲醇轉化率和反應溫度。然而,較高的O2/C比 (0.8)導致更多的氧氣在化學反應中進行甲醇燃燒。造成較低的CO和CH4濃度產生。而CO2濃度受到GHSV和甲醇流速的影響。因較高的GHSV導致觸媒床中反應物在更快的時間通過。本研究之17組反應中,最佳操作條件為O2/C比為 0.7,甲醇流速為0.7 mL min-1、GHSV = 10,000 h-1,且最大氫氣產率為1.604 mol (mol CH3OH)-1。從RSM預測的角度來看,最具影響組合是GHSV和甲醇流量。
英文摘要 Hydrogen energy is a high energy and high efficiency promising technology for clean energy. In this study, a comprehensive analysis on the different reactor with CPOM or POM mechanism explore hydrogen production, and optimize the operating conditions for chemical reaction. Therefore, the study is divided into two parts.
In the first part of this research, the characteristics of catalytic partial oxidation of methane (CPOM) over rhodium-based catalyst bed in a spiral Swiss-roll reactor are studied numerically. The production of syngas is probed by using the Taguchi method and response surface methodology (RSM) to find the best combination of control parameters including GHSV (Gas Hourly Space Velocity), O2/C ratio and CO2/O2 ratio. In the first stage of optimization for Taguchi method, the results recommend that the influences of the factors on the syngas yield are ranked by O2/C ratio > CO2/O2 ratio > GHSV. According to the optimal operation suggested by the Taguchi approach, the maximum H2 yield is 2.24 mol (mol CH4)-1. Thereafter, based on the range told by the first stage optimization, while narrowing the parameter range get more accurate syngas yield. The RSM and ANOVA results display the quadratic response surface regression model and the significance of the regression coefficients indicating the factor of GHSV and best combination of GHSV and O2/C ratio are significant. In the light of the Box-Behnken experimental design used for the second stage of optimization of RSM, the best case of the syngas yield is obtained for 2.31 mol (mol CH4)-1. The validation results show that the best combination parameter of GHSV and O2/C ratio is the same in ANOVA. These evidences reveal that the syngas yield from two stage optimization (Taguchi method "+" RSM) is better than the one from only one stage (Taguchi method). Comparing to the first-stage optimization for Taguchi method, the two-stage optimization has ability to increase 5.15% to the syngas yield for the best case.
In the second part of this research, POM (Partial oxidation of methanol) uses ultrasonic spray system to explore hydrogen production in this study. The h-BN-Pt/Al2O3 catalyst with ultra-low Pt contents (0.2 wt%) are utilized here. The production of hydrogen is probed by using the RSM (Response Surface Methodology) to find the best combination of control parameters including O2/C ratio, methanol flow rate and GHSV (Gas Hourly Space Velocity). The ultrasonic spray system can uniformly disperse methanol and enhance the hydrogen production efficiency when compared to conventional spray systems. The higher O2/C ratio (0.8) has more oxygen to carry out further methanol combustion in the chemical reactions which bring about higher CH3OH conversion and temperature rise. This leads to lower CO and CH4 production. The CO2 concentration is mainly affected by GHSV and CH3OH flow rate. A higher GHSV leads to shorter retention time for the reactants in the catalyst bed, and lower CH3OH flow rate deteriorates the CO2 concentration as well. The maximum H2 yield is 1.635 mol (mol CH3OH)-1 from the perspective of RSM prediction and it results from an O2/C ratio = 0.8, CH3OH flow rate = 0.7 mL min-1 with GHSV = 10,000 h-1. From experiment, the H2 yield is 1.646 mol (mol CH3OH)-1. This shows an error of less than 1%. Therefore, the RSM and ANOVA (Analysis of Variance) results show the quadratic response surface regression model and the significance of the regression coefficients indicating the factor of GHSV is significant
論文目次 Table of Contents
中文摘要 ii
Abstract iv
誌謝 vi
Table of Contents viii
List of Tables xi
List of Figures xiii
Nomenclature xvi
Chapter 1 Introduction 1
1.1. Background 1
1.2. Motivation and objectives 4
1.3. A schematics of experimental procedure 5
Chapter 2 Literature review 7
2.1. Reactor of Swiss roll and ultrasonic spray system 7
2.2. Optimization with Taguchi method and RSM 10
Chapter 3 Theory and methodology 14
3.1. Simulation of Swiss roll reactor establishes and two-stage of optimization analyze with CPOM mechanism 14
3.1.1. Physical description 14
3.1.2. Mathematical formulas 16
3.1.3. Numerical method and grid system 19
3.1.4. Operating conditions 20
3.1.5. Optimization of Taguchi method and Response surface methodology (RSM) 22
3.2. The experiment of ultrasonic spray system and optimization of RSM analyze with POM mechanism 24
3.2.1. Ultrasonic spray system 24
3.2.2. Reaction system 25
3.2.3. Experimental procedure 28
3.2.4. Response surface methodology (RSM) 30
Chapter 4 Results and discussion 31
4.1. Simulation of Swiss roll reactor establishes and two-stage of optimization analyze with CPOM mechanism 31
4.1.1. Yields in Taguchi approach 31
4.1.2. Factor analysis 35
4.1.3. ANOVA analysis 43
4.1.4. Effects of the process parameters on the syngas yield by RSM 48
4.2. The experiment of ultrasonic spray system and optimization of RSM analyze with POM mechanism 54
4.2.1. Gas concentrations 54
4.2.2. From steady-state hydrogen yield, reaction temperature, and methanol conversion 58
4.2.3. Transient temperature and gas formation 63
4.2.4. The effects of the process parameters on the hydrogen yield by RSM 65
4.2.5. Optimization case 72
Chapter 5 Conclusions and future works 74
5.1. Conclusions 74
5.2. Future works 77
References 78
自述 88


List of Tables
Table 1 1 A list of indirect mechanism and kinetics of catalytic partial oxidation of methane. 3
Table 2 1 Literature review of Ultrasonic spray system. 9
Table 2 2 The related papers about two-stage optimization. 12
Table 3 1 A list of governing equations for Swiss roll simulation. 17
Table 3 2 Factors, control parameters, and levels in the adopted Taguchi approach. 21
Table 3 3 A list of ultrasonic spray system frequency corresponds to drop diameter 24
Table 3 4 Box-Behnken experimental design of the hydrogen yield with (a) three process parameters and three coded levels for each parameter (b) air and N2 flow rate correspond to each case. 29
Table 4 1. Syngas yields and S/N ratio with varied conditions for Taguchi method 33
Table 4 2. Three parameters with the effect factor and best combination for Taguchi method. 33
Table 4 3. ANOVA results for the quadratic response surface regression model. 44
Table 4 4. Box-Behnken experimental design of the syngas yield with (a) three process parameters and three coded levels for each parameter (b) three different parameter values for 17 cases. 45
Table 4 5.The plan of experiments along with Box-Behnken for operating condition and hydrogen production. 60
Table 4 6 ANOVA results for the quadratic response surface regression model. 67

List of Figures
Fig. 1 1. A schematics of two-stage optimization of Taguchi method and RSM for Swiss roll reactor with CPOM mechanism. 6
Fig. 1 2. A schematics of optimization of RSM combines to ultrasonic spray system by POM mechanism with a hydrogen yield analysis. 6
Fig. 3 1. Schematics of boundary conditions of a 2-turn spiral Swiss-roll reactor. 18
Fig. 3 2 A schematic of experimental system (A: N2; B: air; C: electric flow rate controller; D: controller readout; E: flow rate meter; F: syringe pump; G: reactor; H: ultrasonic system; I: power supply; J: refractory wool; K: temperature monitor; L: condenser; M: conical flask; N: dryer; O: gas analyzer; P: gas chromatography). 26
Fig. 3 3. A calibration curve of H2 yield for GC. 27
Fig. 4 1. The hydrogen, carbon monoxide and syngas yields for the 16 cases in orthogonal array design. 34
Fig. 4 2. The syngas S/ N ratio generated by Taguchi method. 34
Fig. 4 3 Profiles of (a) mean S/N ratio and (b) factor effect value in terms of syngas yield. 37
Fig. 4 4. (a) Maximum, (b) optimal combination, and (c) minimum temperature profile of Swiss roll. 39
Fig. 4 5. CO2 conversion for all the 17 cases of the Taguchi method. 41
Fig. 4 6. Interaction between parameters for (a) O2/C ratio and CO2/O2 ratio (b) CO2/O2 ratio and GHSV (c) GHSV and O2/C ratio. 42
Fig. 4 7.The relationship diagram of p value corresponding to F value. 46
Fig. 4 8. Comparison between simulate and predicated syngas yield. 47
Fig. 4 9. The syngas yield with varying GHSV and O2/C ratio while the CO2/O2 ratio is constant. 49
Fig. 4 10. The syngas yield with varying GHSV and CO2/O2 ratio while the O2/C ratio is constant. 51
Fig. 4 11. The syngas yield with varying O2/C ratio and CO2/O2 ratio while the GHSV is constant. 52
Fig. 4 12.The relationship diagram of F value and effect value for four different range. 53
Fig. 4 13. Profiles of the CO2 concentrations in product gases for ultrasonic spray system. 55
Fig. 4 14. Profiles of the CO concentrations in product gases for ultrasonic spray system. 55
Fig. 4 15. Profiles of the CH4 concentrations in product gases for ultrasonic spray system. 57
Fig. 4 16. Profiles of the H2 concentrations in product gases for ultrasonic spray system. 57
Fig. 4 17. Profiles of the H2 yield in product gases for ultrasonic spray system. 61
Fig. 4 18. Profiles of the temperature for ultrasonic spray system. 61
Fig. 4 19. Profiles of the methanol conversion for ultrasonic spray system 62
Fig. 4 20. Profiles of the temporal distributions of (a) reaction temperature in ultrasonic spray system and (b) CO2, CO, CH4, and H2 concentration in product gases for ultrasonic spray system. 64
Fig. 4 21. The relationship diagram of p value corresponding to F value. 68
Fig. 4 22.The relationship diagram of F value and effect value for four different range. 69
Fig. 4 23. The hydrogen yield with varying O2/C ratio and CH3OH flow rate while the GHSV is constant. 70
Fig. 4 24. The hydrogen yield with varying O2/C ratio and GHSV while the CH3OH flow rate is constant. 70
Fig. 4 25. The hydrogen yield with varying CH3OH flow rate and GHSV while the O2/C ratio is constant. 71
Fig. 4 26. Optimization case for (a) gas concentration. (b) H2 yield and temperature. 73
參考文獻 [1] Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy. 2019.
[2] Szabados G, Bereczky Á. Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renewable Energy. 2018;121:568-78.
[3] Wilberforce T, El-Hassan Z, Khatib FN, Al Makky A, Baroutaji A, Carton JG, et al. Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy. 2017;42:25695-734.
[4] Marques JGO, Costa AL, Pereira C. NaOH thermochemical water splitting cycle: A new approach in hydrogen production based on sodium cooled fast reactor. International Journal of Hydrogen Energy.
[5] Luo Z, Kriz DA, Miao R, Kuo C-H, Zhong W, Guild C, et al. TiO2 Supported gold–palladium catalyst for effective syngas production from methane partial oxidation. Applied Catalysis A: General. 2018;554:54-63.
[6] Chen W-H, Lin S-C. Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery. Applied Energy. 2016;162:1141-52.
[7] Tsang SC, Claridge JB, Green MLH. Recent advances in the conversion of methane to synthesis gas. Catalysis Today. 1995;23:3-15.
[8] Cipitì F, Barbera O, Briguglio N, Giacoppo G, Italiano C, Vita A. Design of a biogas steam reforming reactor: A modelling and experimental approach. International Journal of Hydrogen Energy. 2016;41:11577-83.
[9] Gaillard M, Virginie M, Khodakov AY. New molybdenum-based catalysts for dry reforming of methane in presence of sulfur: A promising way for biogas valorization. Catalysis Today. 2017;289:143-50.
[10] Chen W-H, Lin S-C. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation. Energy. 2015;82:206-17.
[11] Larimi AS, Alavi SM. Ceria-Zirconia supported Ni catalysts for partial oxidation of methane to synthesis gas. Fuel. 2012;102:366-71.
[12] Rau F, Herrmann A, Krause H, Fino D, Trimis D. Production of hydrogen by autothermal reforming of biogas. Energy Procedia. 2017;120:294-301.
[13] Yan Y, Li H, Li L, Zhang L, Zhang J. Properties of methane autothermal reforming to generate hydrogen in membrane reactor based on thermodynamic equilibrium model. Chemical Engineering and Processing - Process Intensification. 2018;125:311-7.
[14] Zhu X, Liu X, Lian H-Y, Liu J-L, Li X-S. Plasma catalytic steam methane reforming for distributed hydrogen production. Catalysis Today. 2019.
[15] Cai F, Lu P, Ibrahim JJ, Fu Y, Zhang J, Sun Y. Investigation of the role of Nb on Pd−Zr−Zn catalyst in methanol steam reforming for hydrogen production. International Journal of Hydrogen Energy. 2019;44:11717-33.
[16] Polášek J, Johánek V, Ostroverkh A, Mašek K. Methanol oxidation on pure and platinum-doped tungsten oxide supported by activated carbon. Materials Chemistry and Physics. 2019;228:147-59.
[17] Araiza DG, Gómez-Cortés A, Díaz G. Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production. Catalysis Today. 2017;282:185-94.
[18] Li G, Gu C, Zhu W, Wang X, Yuan X, Cui Z, et al. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts. Journal of Cleaner Production. 2018;183:415-23.
[19] Unlu D, Hilmioglu ND. Application of aspen plus to renewable hydrogen production from glycerol by steam reforming. International Journal of Hydrogen Energy. 2019.
[20] Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis. 2003;219:389-403.
[21] Pu Y-C, Li S-R, Yan S, Huang X, Wang D, Ye Y-Y, et al. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming. Fuel. 2019;241:607-15.
[22] Pan CT, Kuo SW, Yi JS, Yen CK, Lin RC, Liu ZH, et al. Preparation of biodegradable polymer microcarriers by ultrasonic emulsification. 2017 International Conference on Applied System Innovation (ICASI)2017. p. 481-4.
[23] Chen W-H, Shen C-T. Partial oxidation of methanol over a Pt/Al2O3 catalyst enhanced by sprays. Energy. 2016;106:1-12.
[24] Kaskow I, Wojtaszek-Gurdak A, Sobczak I. Methanol oxidation on AuAg-Zn/MCM-36 – The effect of catalyst components and pretreatment. Catalysis Today. 2019.
[25] Chen W-H, Shen C-T, Lin B-J, Liu S-C. Hydrogen production from methanol partial oxidation over Pt/Al2O3 catalyst with low Pt content. Energy. 2015;88:399-407.
[26] Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts2014.
[27] Stern AG. A new sustainable hydrogen clean energy paradigm. International Journal of Hydrogen Energy. 2018;43:4244-55.
[28] Karapekmez A, Dincer I. Modelling of hydrogen production from hydrogen sulfide in geothermal power plants. International Journal of Hydrogen Energy. 2018.
[29] Bastwros M, Kim G-Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication. Powder Technology. 2016;288:279-85.
[30] Zainoodin AM, Tsujiguchi T, Masdar MS, Kamarudin SK, Osaka Y, Kodama A. Performance of a direct formic acid fuel cell fabricated by ultrasonic spraying. International Journal of Hydrogen Energy. 2018;43:6413-20.
[31] Isleroglu H, Turker I, Tokatli M, Koc B. Ultrasonic spray-freeze drying of partially purified microbial transglutaminase. Food and Bioproducts Processing. 2018;111:153-64.
[32] Wu C, Liu L, Tang K, Chen T. Studies on an ultrasonic atomization feed direct methanol fuel cell. Ultrasonics Sonochemistry. 2017;34:60-6.
[33] Lin G, Cheng S, Wang S, Hu T, Peng J, Xia H, et al. Process optimization of spent catalyst regeneration under microwave and ultrasonic spray-assisted. Catalysis Today. 2018;318:191-8.
[34] Zhang X, Chen H, Qian F, Cheng Y. Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chemical Engineering Journal. 2018;334:2264-72.
[35] Yu T, An J, Yang X, Bian X, Zhao J. The study of ultrasonic vibration assisted polishing optical glass lens with ultrasonic atomizing liquid. Journal of Manufacturing Processes. 2018;34:389-400.
[36] Li W, Pan Y, Yao Y, Dong M. Modeling and parametric study of the ultrasonic atomization regeneration of desiccant solution. International Journal of Heat and Mass Transfer. 2018;127:687-702.
[37] Elkhalifa EA, Friedrich HB. Oxidative dehydrogenation of n-octane over a vanadium–magnesium oxide catalyst: Influence of the gas hourly space velocity. Arabian Journal of Chemistry. 2015.
[38] Il Kim N, Aizumi S, Yokomori T, Kato S, Fujimori T, Maruta K. Development and scale effects of small Swiss-roll combustors. Proceedings of the Combustion Institute. 2007;31:3243-50.
[39] Baligidad SM, Chandrasekhar U, Elangovan K, Shankar S. RSM Optimization of Parameters influencing Mechanical properties in Selective Inhibition Sintering. Materials Today: Proceedings. 2018;5:4903-10.
[40] Kishore RA, Kumar P, Priya S. A comprehensive optimization study on Bi2Te3-based thermoelectric generators using the Taguchi method. Sustainable Energy & Fuels. 2018;2:175-90.
[41] Aydilek İB. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing. 2018;66:232-49.
[42] Gupta DK, Vasudev KL, Bhattacharyya SK. Genetic algorithm optimization based nonlinear ship maneuvering control. Applied Ocean Research. 2018;74:142-53.
[43] Zahraee SM, Khalaji Assadi M, Saidur R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renewable and Sustainable Energy Reviews. 2016;66:617-30.
[44] Googerdchian F, Moheb A, Emadi R, Asgari M. Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. Journal of Hazardous Materials. 2018;349:186-94.
[45] Adewale P, Vithanage LN, Christopher L. Optimization of enzyme-catalyzed biodiesel production from crude tall oil using Taguchi method. Energy Conversion and Management. 2017;154:81-91.
[46] Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965-77.
[47] Yin Y, Wang J. Optimization of fermentative hydrogen production by Enterococcus faecium INET2 using response surface methodology. International Journal of Hydrogen Energy. 2019;44:1483-91.
[48] Ayodele BV, Ghazali AA, Mohd Yassin MY, Abdullah S. Optimization of hydrogen production by photocatalytic steam methane reforming over lanthanum modified Titanium (IV) oxide using response surface methodology. International Journal of Hydrogen Energy. 2018.
[49] Barati S, Khoshandam B, Ghazi MM. An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology. International Journal of Hydrogen Energy. 2018;43:21928-39.
[50] Liu Z, Cho S, Takezawa A, Zhang X, Kitamura M. Two-stage layout–size optimization method for prow stiffeners. International Journal of Naval Architecture and Ocean Engineering. 2018.
[51] Rahmanifard H, Plaksina T. Application of fast analytical approach and AI optimization techniques to hydraulic fracture stage placement in shale gas reservoirs. Journal of Natural Gas Science and Engineering. 2018;52:367-78.
[52] Hou J, Zhang J. Robust optimization of the efficient syngas fractions in entrained flow coal gasification using Taguchi method and response surface methodology2017.
[53] Brahmeswara Rao D, Venkata Rao K, Gopala Krishna A. A hybrid approach to multi response optimization of micro milling process parameters using Taguchi method based graph theory and matrix approach (GTMA) and utility concept. Measurement. 2018;120:43-51.
[54] Li C, Xiao Q, Tang Y, Li L. A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production. 2016;135:263-75.
[55] Shrivastava PK, Pandey AK. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization. Infrared Physics & Technology. 2018;89:369-80.
[56] Tan YH, Abdullah MO, Nolasco-Hipolito C, Ahmad Zauzi NS. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renewable Energy. 2017;114:437-47.
[57] Mia M. Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement. 2018;121:249-60.
[58] Paulitschke M, Bocklisch T, Böttiger M. Comparison of particle swarm and genetic algorithm based design algorithms for PV-hybrid systems with battery and hydrogen storage path. Energy Procedia. 2017;135:452-63.
[59] Chen W-H, Lin S-C. Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization. Applied Energy. 2018;217:113-25.
[60] Chen W-H, Cheng Y-C, Hung C-I. Entropy generation from hydrogen production of catalytic partial oxidation of methane with excess enthalpy recovery. International Journal of Hydrogen Energy. 2012;37:14167-77.
[61] Chen W-H, Cheng Y-C, Hung C-I. Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production. International Journal of Hydrogen Energy. 2012;37:6608-19.
[62] Chen W-H, Chiu T-W, Hung C-I. Enhancement effect of heat recovery on hydrogen production from catalytic partial oxidation of methane. International Journal of Hydrogen Energy. 2010;35:7427-40.
[63] Schwaab M, Pinto JC. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chemical Engineering Science. 2007;62:2750-64.
[64] López A, Nicholls W, Stickland MT, Dempster WM. CFD study of Jet Impingement Test erosion using Ansys Fluent® and OpenFOAM®. Computer Physics Communications. 2015;197:88-95.
[65] Chen W-H, Chiu T-W, Hung C-I, Lin M-R. Hysteresis and reaction characterization of methane catalytic partial oxidation on rhodium catalyst. Journal of Power Sources. 2009;194:467-77.
[66] Chen W-H. CO2 conversion for syngas production in methane catalytic partial oxidation. Journal of CO2 Utilization. 2014;5:1-9.
[67] Chen W-H, Lin S-C, Chen TC. Biogas partial oxidation in a heat recirculation reactor for syngas production. Energy Procedia. 2017;142:125-30.
[68] Figen HE, Baykara SZ. Effect of ruthenium addition on molybdenum catalysts for syngas production via catalytic partial oxidation of methane in a monolithic reactor. International Journal of Hydrogen Energy. 2018;43:1129-38.
[69] Yang J, Guo Y. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chinese Chemical Letters. 2018;29:252-60.
[70] Jung C, Schindler D. The role of air density in wind energy assessment – A case study from Germany. Energy. 2019;171:385-92.
[71] Chan KY, Yiu CKF, Nordholm S. Microphone configuration for beamformer design using the Taguchi method. Measurement. 2017;96:58-66.
[72] Katata-Seru L, Lebepe TC, Aremu OS, Bahadur I. Application of Taguchi method to optimize garlic essential oil nanoemulsions. Journal of Molecular Liquids. 2017;244:279-84.
[73] Ravi Kumar SM, Kulkarni SK. Analysis of Hard Machining of Titanium Alloy by Taguchi Method. Materials Today: Proceedings. 2017;4:10729-38.
[74] Sun BY, Xiao JB, Li ZB, Ma B, Zhang LT, Huang YL, et al. An analysis of soil detachment capacity under freeze-thaw conditions using the Taguchi method. CATENA. 2018;162:100-7.
[75] Chen W-H, Chen C-Y, Huang C-Y, Hwang C-J. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy. 2017;185:223-32.
[76] Chauhan R, Singh T, Kumar N, Patnaik A, Thakur NS. Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method. Applied Thermal Engineering. 2017;116:100-9.
[77] Alvarez-Galvan C, Falcon H, Cascos V, Troncoso L, Perez-Ferreras S, Capel-Sanchez M, et al. Cermets Ni/(Ce0.9Ln0.1O1.95) (Ln = Gd, La, Nd and Sm) prepared by solution combustion method as catalysts for hydrogen production by partial oxidation of methane. International Journal of Hydrogen Energy. 2018;43:16834-45.
[78] Gong S, Zeng H, Lin J, Shi Y, Hu Q, Cai N. A robust flat-chip solid oxide fuel cell coupled with catalytic partial oxidation of methane. Journal of Power Sources. 2018;402:124-32.
[79] Bawornruttanaboonya K, Devahastin S, Mujumdar AS, Laosiripojana N. A computational fluid dynamic evaluation of a new microreactor design for catalytic partial oxidation of methane. International Journal of Heat and Mass Transfer. 2017;115:174-85.
[80] Celik N, Pusat G, Turgut E. Application of Taguchi method and grey relational analysis on a turbulated heat exchanger. International Journal of Thermal Sciences. 2018;124:85-97.
[81] Cheephat C, Daorattanachai P, Devahastin S, Laosiripojana N. Partial oxidation of methane over monometallic and bimetallic Ni-, Rh-, Re-based catalysts: Effects of Re addition, co-fed reactants and catalyst support. Applied Catalysis A: General. 2018;563:1-8.
[82] Alarcón A, Guilera J, Andreu T. CO2 conversion to synthetic natural gas: Reactor design over Ni–Ce/Al2O3 catalyst. Chemical Engineering Research and Design. 2018;140:155-65.
[83] Moral A, Reyero I, Llorca J, Bimbela F, Gandía LM. Partial oxidation of methane to syngas using Co/Mg and Co/Mg-Al oxide supported catalysts. Catalysis Today. 2019;333:259-67.
[84] Wang Y, Chen G, Li Y, Yan B, Pan D. Experimental study of the bio-oil production from sewage sludge by supercritical conversion process. Waste Management. 2013;33:2408-15.
[85] Gac W, Zawadzki W, Rotko M, Greluk M, Słowik G, Kolb G. Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catalysis Today. 2019.
[86] Fasanya OO, Al-Hajri R, Ahmed OU, Myint MTZ, Atta AY, Jibril BY, et al. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming. International Journal of Hydrogen Energy. 2019.
[87] Sun Q, Men Y, Wang J, Chai S, Song Q. Support effect of Ag/ZnO catalysts for partial oxidation of methanol. Inorganic Chemistry Communications. 2018;92:51-4.
[88] Rednyk A, Ostroverkh A, Johánek V. Hydrogen production via methanol oxidation on platinum oxide thin film catalyst: Influence of methanol-to-oxygen ratio. International Journal of Hydrogen Energy. 2017;42:29254-61.
[89] Li C-L, Lin Y-C. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated LaMnO3 perovskites. Applied Catalysis B: Environmental. 2011;107:284-93.
[90] Chen W-H, Guo Y-Z. Hydrogen production characteristics of methanol partial oxidation under sprays with ultra-low Pt and Pd contents in catalysts. Fuel. 2018;222:599-609.
[91] Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society. 2008;28:1105-9.
[92] Pastor-Pérez L, Patel V, Le Saché E, Reina TR. CO2 methanation in the presence of methane: Catalysts design and effect of methane concentration in the reaction mixture. Journal of the Energy Institute. 2019.
[93] Lefebvre J, Bajohr S, Kolb T. A comparison of two-phase and three-phase CO2 methanation reaction kinetics. Fuel. 2019;239:896-904.
[94] Fatah NAA, Jalil AA, Salleh NFM, Hamid MYS, Hassan ZH, Nawawi MGM. Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM). International Journal of Hydrogen Energy. 2019.
[95] Guo X, Zhang H, Zhu Z. The effect of O2/C ratio on gasification performance and sodium transformation of Zhundong coal. Fuel Processing Technology. 2019;193:31-8.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw