進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201815443100
論文名稱(中文) 壓電效應對氧化鋅家族之纖鋅礦材料的熱電性質之研究
論文名稱(英文) Piezoelectric effect on thermoelectric properties of ZnO based wurtzite materials
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 龔哲永
研究生(英文) Zhe-Yong Gong
學號 N56051548
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-劉全璞
口試委員-張高碩
口試委員-齊孝定
口試委員-陳嘉勻
口試委員-林大偉
中文關鍵字 氧化鋅  氧化鋅鎂  壓電效應  熱電效應  奈米發電機  薄膜  奈米柱 
英文關鍵字 Thermoelectric effect  Piezoelectric effect  ZnO  MgZnO  Thin film  Nanorods  Nanogenerator 
學科別分類
中文摘要 熱電效應(Thermoelectric effect)能將材料的溫度差將熱轉換成電能使用。而壓電效應除了能將機械能轉換成電力使用,利用壓電效應控制載子傳輸行為的「壓電電子學」(piezotronics)是近年來備受矚目的一門領域。其被廣泛的運用在光感、LED、甚至太陽能等能源領域的研究中。
本研究圍繞在具有壓電性的纖鋅礦家族半導體材料,分別為氧化鋅薄膜/奈米柱和氧化鋅鎂薄膜去研究壓電效應對熱電性質的影響。以ITO/PET具可饒性且導電性佳的材料作為基板。薄膜材料以濺鍍製程來製備;奈米柱則是利用水熱法分別成長了2小時、4小時和6小時三組參數的奈米柱,目的是為了觀察由材料薄膜到奈米柱型態過程中,壓電效應對熱電性質影響的漸進式變化。在完成了材料生長後,先進行表面形貌、晶體結構、組成成分以及微結構等材料分析。接著封裝成元件進行熱電性質測試,測試項目有室溫下I-V曲線、熱電壓輸出,並分別在無應變和施加不同應變下進行多次量測。
結果顯示壓電效應對熱電性質確實會有正面的影響,這些影響包含使Seebeck係數上升以及增加元件導電性。另外,本研究的元件設計也發現可以利用壓電效應控制載子通道來決定導電性,並依然讓元件維持在歐姆接觸的狀態。比起控制蕭基特能障高度(Schottky barrier height)來運作的設計,更適合被運用在直流奈米發電機。
英文摘要 Due to the inseparable relation between thermoelectric properties and the carrier transportation, we consider piezoelectric effect can change thermoelectric properties. In this research, we determine the difference of the thermoelectric properties induced by the piezoelectric effect. This research will test this effect on three different materials: ZnO, MgZnO thin films and ZnO nanorods. The ZnO and MgZnO thin film grow on PET/ITO substrate by the sputtering and the ZnO nanorod arrays synthesize through the hydrothermal method. Following the synthesis is measurement of the thermal electric properties such as Seebeck coefficient and I-V characteristic. Then apply compressive and tensile strain on devices in difference bending situations and find out how piezoelectric effect changes thermoelectric properties. The results show that when the temperature range is around 300K~400K, piezoelectric effect affects thermoelectric properties. Basing on our results, we can consider about the probability of combination between piezoelectric effect and thermoelectric effect when we design thermoelectric devices and nanogenerators.
論文目次 目錄
中文摘要 p.I
Extended Abstract p.II
誌謝 p.XI
目錄 p.XII
圖目錄 p.XV
表目錄 p.XIX
第一章 序論 p.1
1.1 前言 p.1
1.2 論文架構 p.3
第二章 文獻回顧 p.4
2.1 熱電效應 p.4
2.1.1 Seebeck effect p.4
2.1.2 Peltier effect p.5
2.1.3 Thomson effect p.7
2.1.4 Figure of merit 8
2.2 二維結構的熱電性質 p.10
2.3 一維結構的熱電性質 p.13
2.4 壓電效應 p.15
2.4.1 壓電效應簡介 p.15
2.4.2 壓電效應對載子傳輸的影響 p.17
2.5 氧化鋅 p.20
2.5.1 氧化鋅簡介 p.20
2.5.2 氧化鋅在二維結構下的熱電性質 p.24
2.5.3 氧化鋅在一維結構下的熱電性質 p.25
2.6 水熱法成長氧化鋅奈米柱 p.27
2.7 氧化鋅鎂合金系統 p.29
第三章 實驗步驟與分析儀器 p.34
3.1 實驗流程圖 p.34
3.2 氧化鋅試片的製備 p.35
3.2.1 基板清洗 35
3.2.2 濺鍍(Sputtering) p.35
3.2.3 水熱法成長氧化鋅奈米柱 p.36
3.2.4 熱電元件製作 p.38
3.2.5 應變施加與熱源供應 p.40
3.3 分析儀器 p.41
3.3.1 掃描式電子顯微鏡(Scanning Electronic Microscope, SEM) p.41
3.3.2 穿透式電子顯微鏡(Transmission Electronic Microscopy, TEM) p.43
3.3.3 多功能X光薄膜繞射儀 p.45
3.3.4 Nanovoltmeter keithley 2182A p.46
3.3.5 Sourcemeter keithley 2400 p.46
3.3.6 Thermoelectric Cooler controller (TEC) p.46
第四章 實驗結果與討論 p.48
4.1 薄膜奈米柱材料分析 p.48
4.1.1 氧化鋅薄膜/奈米柱之表面形貌分析 p.48
4.1.2 薄膜與奈米柱之XRD分析 p.54
4.1.3 薄膜/奈米柱之微結構分析 p.57
4.1.4 薄膜/奈米柱之元素分析 p.65
4.2 薄膜/奈米柱熱電性質結果與討論 p.69
4.2.1 電性量測 p.69
4.2.2 熱電壓結果 p.78
4.2.3 Seebeck係數比較 p.84
4.2.4 薄膜/奈米柱元件的Power factor p.90
第五章 結論 p.92
第六章 參考文獻 p.93
參考文獻 1.. D.M.Rowe.CRC Handbook of Thermoelectrics.CRC Press LLC.USA. (1995)
2. Hamid Elsheikh, M., et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews. 30, 337-355 (2014).
3. Duckworth, H.E.Electricity and magnetism.Holt, Rinehart and Winston.(1960)
4. Snyder, G.J.,E.S. Toberer. Complex thermoelectric materials. Nature Materials. 7, 105 (2008).
5. Cai, K.F., et al. The effect of titanium diboride addition on the thermoelectric properties of β-FeSi2 semiconductors. Solid State Communications. 131, 325-329 (2004).
6. Zide, J., et al. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53 Ga0.47 Asâ̂In 0.53Ga 0.28Al0.19As superlattices. Phys Rev B. 74 (2006).
7. Bian, Z.,A. Shakouri. Enhanced solid-state thermionic emission in nonplanar heterostructures. Applied Physics Letters. 88, 012102 (2006).
8. Zheng, J.-c. Recent advances on thermoelectric materials. Frontiers of Physics in China. 3, 269-279 (2008).
9. Hochbaum, A.I., et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature. 451, 163 (2008).
10. Venkatasubramanian, R., et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 413, 597 (2001).
11. Harman, T.C., et al. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science. 297, 2229-2232 (2002).
12. Fan, P., et al. Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials. Applied Physics Letters. 106, 073901 (2015).
13. Tritt, T.M., Kanatzidis, M. G., Lyon, H. B. Jr & Mahan, G. D. Thermoelectric materialsÐNew,-. directions and approaches. Mater. Res. Soc. Proc. 478.
14. L. D. Hicks, T. C. Harman, and M. S. Drcsselhaus. Appl. Phys. Lett. 64, (1993).
15. L. D. Hicks, T.C.H., X. Sun, and M. S. Drcsselhaus. Phys. Rev. B53, R10493-R10496 (1996).
16. Mahan, G.D. Physics Today. March, (1997).
17. Tritt, T.M., et al.Thermoelectric Materials - New Directions and Approaches.(1997)
18. Hicks, L.D.,M.S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B. 47, 12727-12731 (1993).
19. Harman, T. C., Taylor, P. J., Spears, D. L. &Walsh, M. P. in Proc. 18th Int. Conf. on Thermoelectrics (ed. Ehrlich, A.) 280±284 (IEEE, Piscataway, NJ, 1999).
20. Venkatasubramanian, R. et al.in Proc. 1st Natl Thermogenic Cooler Workshop (ed. Horn, S. B.) 196± 231 (Center for Night Vision and Electro-Optics, Fort Belvoir, VA, 1992).
21. Venkatasubramanian, R. Thin-Film Superlattice and Quantum-Well Structures -- A New Approach to High-Performance Thermoelectric Materials. Naval Research Reviews. 58, 44-54 (1996).
22. Lee, S.-M., D.G. Cahill,R. Venkatasubramanian. Thermal conductivity of Si–Ge superlattices. Applied Physics Letters. 70, 2957-2959 (1997).
23. Ettenberg, M. H., Jesser, W. A. & Rosi, F. D. in Proc. 15th Int. Conf. on Thermoelectrics (ed. Caillat, T.) 52±56 (IEEE, Piscataway, NJ, 1996).
24. Hicks, L.D., et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B. 53, R10493-R10496 (1996).
25. R.X. Yan, D.G., P.D. Yang. Nature Photonics 3. 569-576 (2009).
26. E.C. Garnett, P.D.Y. Journal of the American Chemical Society 130, (2008).
27. Vomiero, A., et al. One-dimensional nanostructured oxides for thermoelectric applications and excitonic solar cells. Nano Energy. 1, 372-390 (2012).
28. A.Majumdar. Science. 303, 777-778 (2004).
29. M.S.Dresselhaus, Y.M.L., M.R.Black, O.Rabin, G. Dresselhaus. Newdirectionsforlowdimensionalthermoelectricity. MaterialsResearchSociety. 419 (2004).
30. Tang, J., et al. Holey Silicon as an Efficient Thermoelectric Material. Nano Letters. 10, 4279-4283 (2010).
31. Wang, Z.L.Piezotronics and Piezo‐Phototronics.Published. (2012)
32. Wang, Z.L.Introduction of Piezotronics and Piezo-Phototronics.Springer Berlin Heidelberg.Place. Published. (2012)
33. Patolsky, F.,C.M. Lieber. Nanowire nanosensors. Materials Today. 8, 20-28 (2005).
34. Zheng, G., et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology. 23, 1294 (2005).
35. Chang, P.-C., et al. High-performance ZnO nanowire field effect transistors. Applied Physics Letters. 89, 133113 (2006).
36. Zhou, J., et al. Flexible Piezotronic Strain Sensor. Nano Letters. 8, 3035-3040 (2008).
37. Wang, X., et al. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters. 6, 2768-2772 (2006).
38. Bridgman, P.W. The Effect of Homogeneous Mechanical Stress on the Electrical Resistance of Crystals. Physical Review. 42, 858-863 (1932).
39. Smith, C.S. Piezoresistance Effect in Germanium and Silicon. Physical Review. 94, 42-49 (1954).
40. Nakamura, K. First-principles analysis on Seebeck coefficient in zinc oxide nanowires for thermoelectric devices. IOP Conference Series: Materials Science and Engineering. 108, (2016).
41. Lyu, S.C., et al. Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method. Chemistry of Materials. 15, 3294-3299 (2003).
42. Sugunan, A., et al. Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology. 39, 49-56 (2006).
43. J., Z., X.N. S.,W.Z. L. Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials. 18, 2432-2435 (2006).
44. Ohtaki, M., et al. High‐temperature thermoelectric properties of (Zn1−xAlx)O. Journal of Applied Physics. 79, 1816-1818 (1996).
45. Schröer, P., P. Krüger,J. Pollmann. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Physical Review B. 47, 6971-6980 (1993).
46. Wiff, J.P., et al. Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics. Journal of the European Ceramic Society. 29, 1413-1418 (2009).
47. Janotti, A.,C.G. Van De Walle. Nat. Mater. 6, (2006).
48. Colder, H., et al. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. Journal of the European Ceramic Society. 31, 2957-2963 (2011).
49. Catellani, A., et al. Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires. RSC Advances. 5, 44865-44872 (2015).
50. Cheng, H., et al. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International. 35, 3067-3072 (2009).
51. Anderson, J.,G.V.d.W. Chris. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics. 72, 126501 (2009).
52. JAIMA. Hitachi High-Tech Launches the SU8000. ( 2008). Available: https://www.businesswire.com/news/home/20080807005015/en/Hitachi-High-Tech-Launches-SU8000

53. Zhang, Y., et al. Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials. 2012, 22 (2012).
54. Loureiro, J., et al. Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. Journal of Materials Chemistry A. 2, 6649-6655 (2014).
55. Yin, Y., B. Tudu,A. Tiwari. Recent advances in oxide thermoelectric materials and modules. Vacuum. 146, 356-374 (2017).
56. ChemicalScience. 2, 706-714 (2011).
57. Advanced Functional Materials. 21, 3900-3906 (2011).
58. Law M, G.J., Yang P. Annu. Rev. Mater. Res. 83, (2004).
59. Schmidt-Mende, L.,J.L. MacManus-Driscoll. ZnO – nanostructures, defects, and devices. Materials Today. 10, 40-48 (2007).
60. Vispute, R.D., et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Applied Physics Letters. 73, 348-350 (1998).
61. Solozhenko, V.L., A.N. Baranov,V.Z. Turkevich. High-pressure formation of MgxZn1−xO solid solutions with rock salt structure. Solid State Communications. 138, 534-537 (2006).
62. Yaonan, H., M. Zengxia,D. Xiaolong. Semiconductor ultraviolet photodetectors based on ZnO and Mg x Zn 1− x O. Journal of Physics D: Applied Physics. 47, 283001 (2014).
63. Sharma, A.K., et al. Optical and structural properties of epitaxial MgxZn1−xO alloys. Applied Physics Letters. 75, 3327-3329 (1999).
64. Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors. Applied Physics Letters. 82, 3424-3426 (2003).
65. Kumari, L., et al. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceramics International. 35, 3355-3364 (2009).
66. Whited, R.C., C.J. Flaten,W.C. Walker. Exciton thermoreflectance of MgO and CaO. Solid State Communications. 13, 1903-1905 (1973).
67. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 32, 751-767 (1976).
68. Zeng, J.M., et al. Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition. Journal of Crystal Growth. 169, 474-479 (1996).
69. Ohtomo, A., et al. MgxZn1−xO as a II–VI widegap semiconductor alloy. Applied Physics Letters. 72, 2466-2468 (1998).
70. Young Kim, S., et al. Low-resistance Ti/Al ohmic contact on undoped ZnO. Journal of Electronic Materials. 31, 868-871 (2002).
71. Yang, R., et al. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology. 4, 34 (2008).
72. Turner, D.R.,H.A. Sauer. Ohmic Contacts to Semiconducting Ceramics. Journal of The Electrochemical Society. 107, 250-251 (1960).
73. Wang, Y., et al. A Self-Powered Fast-Response Ultraviolet Detector of p–n Homojunction Assembled from Two ZnO-Based Nanowires. Nano-Micro Letters. 9, 11 (2016).
74. Javaid, W. Scanning Electron Microscopy. ( 2013). Available: https://www.slideshare.net/waqasjavaid547/scanning-electron-microscopy-28066279

75. Billah, A.Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication (2016)
76. Abudayyeh, H.‫Synthesis and Analysis of ZnO Nanowires.(2012)‬
77. Biswas, B.Growth defects in CrN/NbN coatings deposited by HIPIMS/UBM techniques.(2017)
78. Guo, M., P. Diao,S. Cai. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry. 178, 1864-1873 (2005).
79. Fang, Z.B., et al. Influence of post-annealing treatment on the structure properties of ZnO films. Applied Surface Science. 241, 303-308 (2005).
80. Wang, L., et al. Effect of high-temperature annealing on the structural and optical properties of ZnO films. Thin Solid Films. 491, 323-327 (2005).
81. Babar, A.R., et al. Sensing properties of sprayed antimony doped tin oxide thin films: Solution molarity. Journal of Alloys and Compounds. 509, 3108-3115 (2011).
82. Özgür, Ü., et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics. 98, 041301 (2005).
83. A., M.B., et al. Improved Performance in Bulk Heterojunction Organic Solar Cells with a Sol-Gel MgZnO Electron-Collecting Layer. Advanced Energy Materials. 4, 1400073 (2014).
84. Mantini, G., et al. Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Research. 2, 624-629 (2009).
85. Inoue, Y., et al. Thermoelectric Properties of Amorphous Zinc Oxide Thin Films Fabricated by Pulsed Laser Deposition. MATERIALS TRANSACTIONS. 46, 1470-1475 (2005).
86. Ellmer, K.,R. Mientus. Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries. Thin Solid Films. 516, 5829-5835 (2008).
87. Hutson, A.R. Piezoelectric Scattering and Phonon Drag in ZnO and CdS. Journal of Applied Physics. 32, 2287-2292 (1961).
88. Minnich, A.J., et al. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science. 2, 466-479 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw