進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201815252700
論文名稱(中文) 高時間解析度地表導電率量測
論文名稱(英文) Ground conductivity measurements with high temporal resolution
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 何旻潔
研究生(英文) Min-Chieh Ho
學號 LA6041064
學位類別 碩士
語文別 中文
論文頁數 54頁
口試委員 指導教授-陳炳志
口試委員-張起維
口試委員-陳佳宏
中文關鍵字 大氣導電率  吉爾定電容器  高時間解析度 
英文關鍵字 Atmospheric Electric Conductivity  Gerdien Condenser  High Temporal Resolution 
學科別分類
中文摘要   大氣導電率受到離子濃度、遷移率等因素影響,在不同時間、高度、溫度與濕度條件,以及不同大氣組成成分的環境中會隨之變化。此外,於2011、2014年由郭政靈博士等人所提出的模型中,指出地震前兆可能導致地表導電率發生變化。本論文將發展高時間解析度的導電率量測儀器,可用於觀察導電率變化以及擾動因素。
  於本論文中發展了電流型吉爾定電容器(Gerdien condenser)作為導電率量測儀器,並且提高時間解析度,以及重新設計電子電路以提升訊噪比,同時改善機械結構以降低溢漏電流與靜電附著對於量測之影響。
  經由負離子產生器與真空乾燥箱進行測試與驗證後,吉爾定電容器可有效量測於不同離子濃度下之導電率變化,並移至戶外進行兩次長時間的導電率現地量測。分別觀察到導電率上升時,細懸浮微粒PM2.5與PM10之濃度也有上升的趨勢。以及導電率可能具有日週期變化:在上午10點時,導電率達到一天當中的最大值,並持續降低至下午三點的最低值。
英文摘要     The atmospheric conductivity varies with time, height, humidity and composed of the environment. In addition, an ionosphere-atmosphere-lithosphere coupling model proposed by Kuo et al. [2011, 2014] pointed out that the precursors of earthquake may also result a change of the conductivity at ground. The goal of this work is to design a Gerdien condenser with a high temporal resolution to observe the conductivity variation and its associations. Furthermore, the long-term in-situ conductivity monitoring can understand the circulation of the electric charges above the Earth's surface and the global electric circuit.
In this work, the circuit of the Gerdien condenser was redesigned, and the mechanical structure was enhanced to reduce the leakage current effectively and to solve the problem of the static charges adherence to the outer electrode. After the verification, this instrument can measure the variation of the conductivity at different ion concentrations effectively. Two experiments were carried out, and the variation of the conductivity associated with the PM2.5 and PM10 was observed, furthermore, the diurnal variation of the conductivity is also noted.
論文目次 摘要 I
Extended Abstract II
致謝 VIII
目錄 IX
圖目錄 XI
第一章 簡介 1
1.1 大氣導電率 1
1.1.1 大氣導電率之擾動 3
1.1.2 地震前兆對於大氣導電率之影響 4
1.2 大氣導電率重要性 5
1.3 研究動機 6
1.4 論文結構 7
第二章 導電率量測介紹與原理 8
2.1 吉爾定電容器發展簡介 8
2.2 導電率量測介紹 9
2.2.1 由電位差量測導電率 9
2.2.2 由電流量量測導電率 11
2.3 吉爾定電容器原理 12
2.4 性能估算 14
第三章 電流型吉爾定電容器設計 16
3.1 整體系統架構 16
3.2 機械結構 17
3.3 電路系統 18
3.3.1 超高阻抗輸入電路 19
3.3.2 訊號處理電路 20
3.3.3 類比數位轉換電路 22
3.4 微處理器之整合系統 24
3.5 電力系統 26
3.6 儀器規格 29
第四章 測試與驗證 31
4.1 吉爾定電容器之測試與改良 31
4.2 實測驗證 36
4.2.1 負離子產生器 36
4.2.2 真空乾燥箱 38
第五章 地表導電率量測結果分析與討論 41
5.1 地表導電率量測 41
5.1.1 第一次現地量測(2018/01/11 16:00 – 2018/01/12 14:00) 42
5.1.2 第二次現地量測(2018/01/24 16:00 – 2018/01/26 18:00) 45
5.3 實驗總結 48
第六章 結論與未來展望 49
6.1 結論 49
6.2 未來展望 50
參考文獻 52
參考文獻 Allen, R. M. and H. Kanamori (2003), The Potential for Earthquake Early Warning in Southern California, Science, 300, 786-789.
Aplin, K. L. (2000), Instrumentation for Atmospheric Ion Measurements, PhD Thesis, University of Reading.
Bolt, B. A., and W. H. Freeman (2004), Earthquakes, 5th ed., New York.
Burt, D. A. (1967), The Development of a Gerdien Condenser for Sounding Rockets, Upper Air Research Laboratory, University of Utah, Scientific Reprot No. 8.
Chalmers, J. A. (1967), Atmospheric Electricity, 2nd ed., 515, Pergamon, Oxford, U. K.
Gerdien, H. (1905), Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 240.
Gish, O. H. (1951), Universal aspects of atmospheric electricity, In Compendium of Meteorology, edited by T. F. Malone, American Meteorological Society, Boston, 101-119.
Harrison, R. G. (2004), The global atmospheric electrical circuit and climate, Surveys in Geophysics, 25, 441-484.
Hatakeyama, H. et al. (1958), A radiosonde instrument for the measurement of atmospheric electricity and its flight results. In: Smith LG (ed) Recent advances in atmospheric electricity, Pergamon, New York.

Holzworth, R. H., K. W. Norville, P. M. Kintner, and S.P. Powell (1986), Stratospheric conductivity variations over thunderstorms, J. Geophys. Res., 91, 13257-13263.
Kamsali, N., B. S. N. Prasad, and J. Datta (2009), Atmospheric electrical conductivity measurements and modeling for application to air pollution studies, Advances in Space Research, 44, 1067-1078.
Kuo, C. L., J. D. Huba, G. Joyce, and L. C. Lee (2011), Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res., 116, A10317.
Kuo, C. L., L. C. Lee, J. D. Huba (2014), An improved coupling model for the lithosphere-atmosphere-ionosphere system, J. Geophys. Res., 119, 3189-3205.
Pawar, S. D., P. Murugavel, and D. M. Lal (2009), Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean, J. Geophys. Res., 114, D02205, doi:10.1029/2007JD009716.
Rosen, J. M., D. J. Hofmann, W. Gringel, J. Berlinski, S. Michnowski, Y. Morita, T. Ogawa, and D. Olson (1982), Results of an International Workshop on Atmopheric Elecrical Measurements, J. Geophys. Res., 87, 1219-1227.
Rycroft, M. J., and R. G. Harrison (2011), Electromagnetic atmosphere-plasma coupling the global atmospheric electric circuit., Space Sci. Rev., doi:10.1007/s11214-011-9830-8.


Swann, W. F. G. (1914), The theory of electrical dispersion into the free atmosphere, with a discussion of the theory of the Gerdien conductivity apparatus, and of the theory of the collection of radioactive deposit by a charged conductor, J. Terr. Mag. Atmos. Elect., 19, 81-92.
Thomson, J. J. (1928), Conduction of electricity through gases, 3rd edition, Cambridge University Press.
Widdel, H. U., G. Rose, and R. Borchers (1976), Experimental results on the variation of electric conductivity and ion mobility in the mesosphere, J. Geophys. Res., 81, 34, 6217-6220.
Winn, W. P., C. B. Moore, C. R. Holmes, and L. G. Byerley III. (1978), Thunderstorm on July 16, 1975, over Langmuir laboratory: a case study, J. Geophys. Res., 83, 3079-3091.
Woessner, R. H., W. E. Cobb, and H. Gunn (1958), Simultanenous measurements of the positive and negative light-ion conductivities to 26 km, J. Geophys. Res., 63, 171-180.
邱泰瑋(2017),「使用探空氣球量測對流雲中的電荷垂直分布」,國立成功大學太空與電漿科學研究所碩士論文。
葉爾君(2018),「劇烈天氣與地震之地表垂直電場變化」,國立成功大學太空與電漿科學研究所碩士論文。
賴炫禎(2018),「發展吉爾定電容器用於大氣導電率量測」,國立成功大學太空與電漿科學研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw