進階搜尋


下載電子全文  
系統識別號 U0026-2308201814093300
論文名稱(中文) 石墨烯捲曲與分佈機制
論文名稱(英文) Scrolling and distribution mechanisms of graphene sheets
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 黃政凱
研究生(英文) Zheng-Kai Huang
電子信箱 kenkon61602@gmail.com
學號 N56041056
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 口試委員-蘇安仲
口試委員-丁志明
指導教授-阮至正
口試委員-王紀
口試委員-鄭弘隆
中文關鍵字 聚噻吩高分子  捲曲石墨烯  梳狀結構  有序聚集 
英文關鍵字 Polythiophene  scrolling graphene  comb-like structure  ordered aggregation 
學科別分類
中文摘要 本研究主要探討石墨烯形態演變的機制,並且探討高分子於不同形態中的晶相成長以及析出取向之差異。進一步於薄膜中發展管狀石墨烯的有序析出以及層狀石墨烯的有序聚集。這可以使得高分子的板晶成長與析出取向,成為驅使石墨烯排列的契機。
於是,我們利用共軛高分子的貼附來降低其聚集的趨勢,使得石墨烯可以穩定懸浮於溶液中。對於貼附於石墨烯表面的共軛高分子來說,石墨烯形態的改變將衍生出不同的結晶行為以及析出取向。因此,此研究將著重在石墨烯形態的演變及其帶來的效應。
首先藉由改變溶液中的高分子濃度、側鏈長度以及溶劑親和性來探討石墨烯於溶液中的脫層與懸浮機制。再於懸浮液中添加正己烷,驅使石墨烯捲曲。藉由調控溶劑親和性、高分子濃度、石墨烯濃度、溫度以及溶液靜置時間等因素,來逐步瞭解石墨烯於溶液中的捲曲與攤平機制。此外,將會分別探討P3HT於管狀以及層狀石墨烯表面的結晶行為,來瞭解P3HT結晶成長與析出取向的差異。
於薄膜中,藉由溶劑揮發速率以及P3HT於管狀石墨烯的結晶成長取向,來調控梳狀結構的析出取向分佈。此外,也利用HMB與P3HT之間的磊晶關係以及P3HT於層狀石墨烯表面的析出貼附,來探討石墨烯於P3HT晶相中有序聚集的行為。因此,於不同形態的石墨烯表面,P3HT的析出貼附以及後續的結晶成長,是驅使石墨烯於薄膜中有序析出與聚集的契機。
英文摘要 In this study, we investigate possible mechanisms responsible for the evolution of graphene morphology, including the scrolling and reverse flattening behavior. Furthermore, the aggregation and stacking of precipitated graphene flakes within thin film has been explored as well.
Upon the addition of hexane in solution, suspended graphene sheets were found to scroll into tube-like shape as to avoid the less favored interactions with surrounding solvent molecules. The outer and inner curvature of scrolling graphene sheets has also been calculated. The solvent composition, polymer concentration, graphene concentration, suspension storing time and solution temperature have been discussed as influential factors in this research. In addition, the crystallization behavior of P3HT on scrolled graphene flakes have been discussed responsible to cause the reverse flattening behavior. The interactions between P3HT crystalline lamellae and graphene flake are optimized by the flattening of scrolled graphene, and hence the slow crystallization of adsorbed P3HT in solution eventually causes the reverse flattening of scrolled graphene flakes.
During slow solvent evaporation speed, dissolved P3HT coils is able to deposit on scrolled graphene flakes, which leads to the outward growth of crystalline whiskers. With the dense growth of P3HT crystalline whiskers on scrolled graphene, comb-like structure eventually develops. Furthermore, ordered aggregation of graphene flakes could be developed at specific condition by the addition of HMB into P3HT/graphene thin film. Therefore, precipitation and successive crystallization of P3HT on graphene surface are the main points to develop graphene flakes with ordered aggregation and comb-like structure with ordered precipitation within thin film.

Keyword: Polythiophene, scrolling graphene, comb-like structure, ordered aggregation
論文目次 摘要 I
英文延伸摘要 II
誌謝 VI
目錄 VIII
圖目錄 XI
表目錄 XIX
第一章 緒論 1
第二章 文獻回顧 2
2.1 材料的導電機制 2
2.1.1 金屬與高分子的導電機制 2
2.1.2 石墨烯的導電機制與應用 3
2.2 石墨烯的剝離技術 4
2.2.1 液相剝離法 4
2.3 石墨烯與有機分子的混摻 5
2.3.1 分子於石墨烯表面的貼附機制 7
2.3.2 小分子於石墨烯表面的貼附行為 8
2.3.3 石墨烯於高分子溶液中的分散行為 10
2.3.4 高分子於石墨烯表面的結晶行為 14
2.4 石墨烯於高分子溶液中的排列行為 17
2.4.1 溶劑揮發驅使石墨烯排列 17
2.4.2 旋轉塗佈法驅使石墨烯排列 18
第三章 材料與實驗方法 21
3.1 實驗材料 21
3.2 實驗分析儀器 23
3.3 實驗流程 26
3.4 實驗步驟 31
3.4.1 石墨烯懸浮液製備 31
3.4.2 薄膜製備 31
第四章 結果與討論 33
4.1 石墨烯於溶液中的懸浮 33
4.1.1 石墨烯於高分子溶液中的懸浮 33
4.1.2 高分子濃度與側鏈的效應 35
4.1.3 溶劑親和性的效應 37
4.1.4 石墨烯尺寸的效應 40
4.2 懸浮石墨烯的捲曲 41
4.2.1 管狀石墨烯的發現與鑑定 42
4.2.2 捲曲機制 48
4.2.3 P3HT於石墨烯表面的結晶行為 53
4.2.4 石墨烯析出取向之探討 55
4.3 石墨烯的攤平 61
4.3.1 攤平機制 61
4.3.2 P3HT於石墨烯表面的結晶行為 66
4.3.3 石墨烯有序聚集的行為 67
第五章 結論 78
石墨烯於溶液中的懸浮 78
懸浮石墨烯的捲曲 78
石墨烯的攤平 78
石墨烯於薄膜中的析出與聚集 79
第六章 參考文獻 81
參考文獻 (1) Neamen, D.A. Semiconductor Physics and Devices: Basic Principles, 4e, 2014, Mc Graw Hill Education.
(2) Fichou, D.; Horowitz, G. Molecular and Polymer Semiconductors, Conductors, and Superconductors: Overview. Encyclopedia of Materials: Science and Technology, 2001, 5748-5757.
(3) Yao, Y.; Dong, H.; Liu, F.; Russell, T. P.; Hu, W. Approaching Intra‐and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. Advanced Materials, 2017, 29(29), 170125(1-6).
(4) Chen, K.; Song, S.; Liu, F.; Xue, D. Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015, 44(17), 6230-6257.
(5) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: a review of graphene. Chemical Reviews, 2009, 110(1), 132-145.
(6) Rao, C. E. E.; Sood, A. E.; Subrahmanyam, K. E.; Govindaraj, A. Graphene: the new two‐dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42), 7752-7777.
(7) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35), 3906-3924.
(8) Kim, F.; Cote, L. J.; Huang, J. Graphene Oxide: Surface Activity and Two‐Dimensional Assembly. Advanced Materials, 2010, 22(17), 1954-1958.
(9) Pei, S.; Cheng, H. M. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3228.
(10) Mohan, V. B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B, 2015, 193, 49-60.
(11) Yu, W.; Xie, H.; Chen, L.; Zhu, Z.; Zhao, J.; Zhang, Z. Graphene based silicone thermal greases. Physics Letters A, 2014, 378(3), 207-211.
(12) Hou, Z. L.; Song, W. L.; Wang, P.; Meziani, M. J.; Kong, C. Y.; Anderson, A.; Sun, Y. P. Flexible graphene–graphene composites of superior thermal and electrical transport properties. ACS Applied Materials & Interfaces, 2014, 6(17), 15026-15032.
(13) Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1), 109-162.
(14) Hogan, B. T.; Kovalska, E.; Craciun, M. F.; Baldycheva, A. 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017, 5(43), 11185-11195.
(15) Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Letters, 2009, 9(10), 3460-3462.
(16) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; Boland, J. J. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9), 563-568.
(17) Parviz, D.; Das, S.; Ahmed, H. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano, 2012, 6(10), 8857-8867.
(18) Zhang, L.; Zhang, Z.; He, C.; Dai, L.; Liu, J.; Wang, L. Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano, 2014, 8(7), 6663-6670.
(19) Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano, 2010, 4(6), 3155-3162.
(20) De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Coleman, J. N. Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant‐Stabilized, Oxide‐Free Graphene Dispersions. Small, 2010, 6(3), 458-464.
(21) Zhou, X.; Yang, X. Improved dispersibility of graphene oxide in o-dichlorobenzene by adding a poly (3-alkylthiophene). Carbon, 2012, 50(12), 4566-4572.
(22) Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K.; Trapalis, C. Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Communications, 2009, 149(47-48), 2172-2176.
(23) Iguchi, H.; Higashi, C.; Funasaki, Y.; Fujita, K.; Mori, A.; Nakasuga, A.; Maruyama, T. Rational and practical exfoliation of graphite using well-defined poly (3-hexylthiophene) for the preparation of conductive polymer/graphene composite. Scientific Reports, 2017, 7, 39937(1-8).
(24) Chunder, A.; Liu, J.; Zhai, L. Reduced Graphene Oxide/Poly (3‐hexylthiophene) Supramolecular Composites. Macromolecular rapid communications, 2010, 31(4), 380-384.
(25) Wajid, A. S.; Das, S.; Irin, F.; Ahmed, H. T.; Shelburne, J. L.; Parviz, D.; Green, M. J. Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 2012, 50(2), 526-534.
(26) Chen, N.; Liu, Y. T.; Xie, X. M.; Ye, X. Y.; Feng, X.; Chen, Y. F.; Wang, Y. H. High-concentration aliphatic and aromatic dispersions of single-and few-layer graphene noncovalently modified by block copolymer crystallization. Carbon, 2012, 50(12), 4760-4764.
(27) Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 2014, 43(1), 381-398.
(28) Martinez, C. R.; Iverson, B. L. Rethinking the term “pi-stacking”. Chemical Science, 2012, 3(7), 2191-2201.
(29) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Kim, K. S. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 2012, 112(11), 6156-6214.
(30) Wang, Y.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide. The Journal of Physical Chemistry C, 2010,114(9), 4153-4159.
(31) Hill, C. M.; Zhu, Y.; Pan, S. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano, 2011, 5(2), 942-951.
(32) Kim, D. H.; Lee, H. S.; Shin, H. J.; Bae, Y. S.; Lee, K. H.; Kim, S. W.; Choi, J. Y. Graphene surface induced specific self-assembly of poly (3-hexylthiophene) for nanohybrid optoelectronics: from first-principles calculation to experimental characterizations. Soft Matter, 2013, 9(22), 5355-5360.
(33) Boulanger, N.; Yu, V.; Hilke, M.; Toney, M. F.; Barbero, D. R. In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature. Physical Chemistry Chemical Physics, 2017, 19(12), 8496-8503.
(34) Acevedo-Cartagena, D. E.; Zhu, J.; Trabanino, E.; Pentzer, E.; Emrick, T.; Nonnenmann, S. S.; Hayward, R. C. Selective nucleation of poly (3-hexyl thiophene) nanofibers on multilayer graphene substrates. ACS Macro Letters, 2015, 4(5), 483-487.
(35) Agbolaghi, S.; Abbaspoor, S.; Massoumi, B.; Sarvari, R.; Sattari, S.; Aghapour, S.; Charoughchi, S. Conversion of Face‐On Orientation to Edge‐On/Flat‐On in Induced‐Crystallization of Poly (3‐hexylthiophene) via Functionalization/Grafting of Reduced Graphene Oxide with Thiophene Adducts. Macromolecular Chemistry and Physics, 2018, 219(4), 1700484(1-15).
(36) Zhao, W.; Kong, J.; Liu, H.; Zhuang, Q.; Gu, J.; Guo, Z. Ultra-high thermally conductive and rapid heat responsive poly (benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale, 2016, 8(48), 19984-19993.
(37) Tong, W.; Zhang, Y.; Yu, L.; Luan, X.; An, Q.; Zhang, Q.; Zhang, Z. Novel method for the fabrication of flexible film with oriented arrays of graphene in poly (vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. The Journal of Physical Chemistry C, 2014, 118(20), 10567-10573.
(38) Li, L.; Lu, G.; Yang, X. Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry, 2008, 18(17), 1984-1990.
(39) He, M.; Ge, J.; Fang, M.; Qiu, F.; Yang, Y. Fabricating polythiophene into highly aligned microwire film by fast evaporation of its whisker solution. Polymer, 2010, 51(10), 2236-2243.
(40) Bkakri, R.; Chehata, N.; Ltaief, A.; Kusmartseva, O. E.; Kusmartsev, F. V.; Song, M.; Bouazizi, A. Effects of the graphene content on the conversion efficiency of P3HT: Graphene based organic solar cells. Journal of Physics and Chemistry of Solids, 2015, 85, 206-211.
(41) Chen, F.; Liu, S.; Shen, J.; Wei, L.; Liu, A.; Chan-Park, M. B.; Chen, Y. Ethanol-assisted graphene oxide-based thin film formation at pentane–water interface. Langmuir, 2011, 27(15), 9174-9181.
(42) Hu, L.; Ma, R.; Ozawa, T. C.; Geng, F.; Iyi, N.; Sasaki, T. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface. Chemical Communications, 2008, 0, 4897-4899.
(43) Ma, R.; Osada, M.; Hu, L.; Sasaki, T. Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets: topotactic conversion into oxide and resistive switching. Chemistry of Materials, 2010, 22(23), 6341-6346.
(44) Li, X.; Yang, T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F. E.; Fang, Y. Large‐Area Ultrathin Graphene Films by Single‐Step Marangoni Self‐Assembly for Highly Sensitive Strain Sensing Application. Advanced Functional Materials, 2016, 26(9), 1322-1329.
(45) Shim, J.; Yun, J. M.; Yun, T.; Kim, P.; Lee, K. E.; Lee, W. J.; Kim, S. O. Two-minute assembly of pristine large-area graphene based films. Nano letters, 2014, 14(3), 1388-1393.
(46) Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S. J.; Lee, W. R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 2015, 21, 11-25.
(47) Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey Jr, J. T.; Ramasamy, M. S.; Cho, J. W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67, 1-47.
(48) Diez Pascual, A. M.; Luceño Sánchez, J. A.; Peña Capilla, R.; Garcia Diaz, P. Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers, 2018, 10(2), 217.
(49) Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 2010, 35(3), 357-401.
(50) Tremel, K.; Ludwigs, S. P3HT Revisited–From Molecular Scale to Solar Cell Devices. Springer, 2014, Berlin Heidelberg, 39-82.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw