進階搜尋


 
系統識別號 U0026-2308201811384600
論文名稱(中文) 應用高強度鋼筋混凝土於斷層近域橋梁之耐震性能設計
論文名稱(英文) Seismic Performance Design of New RC Bridges subjected to Near-Fault Earthquakes
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 吳振揚
研究生(英文) Chen-Yang Wu
學號 N66054085
學位類別 碩士
語文別 中文
論文頁數 310頁
口試委員 指導教授-劉光晏
口試委員-洪崇展
口試委員-李宏仁
口試委員-曾榮川
口試委員-彭康瑜
中文關鍵字 高強度鋼筋混凝土  橋柱  近斷層地震  應變率 
英文關鍵字 High-Strength Concrete  Bridge Column  Near-Fault Earthquake  Strain Rate 
學科別分類
中文摘要 本研究採用自行發展之本土化高強度鋼筋混凝土受圍束之應力應變關係,進行柱構件之撓曲強度與變形能力分析。材料強度之適用範圍,混凝土抗壓強度為70 MPa,縱向鋼筋為690 MPa,橫向鋼筋為790 MPa或420 MPa。柱構件尺寸以60 cm斷面為限,且橫向鋼筋之用量以符合ACI 318-14為原則。分析時首先完成彎矩曲率分析,再經由彎矩面積法之積分,並考量塑性鉸長度之貢獻,可計算得斷面之撓曲強度與極限變形,經比對數組實驗成果獲得良好的一致性。本研究並採用其他高強度混凝土材料模式,檢討分析結果的差異性。
再將本土化之高強度鋼筋混凝土受圍束之應力應變關係實際運用於橋柱設計中,並探討運用高強度混凝土取代一般強度混凝土橋柱後,對於橋柱斷面大小與鋼筋用量縮減之效果,並檢核縮減之高強度斷面在相同的上部結構載重下是否具有相同的結構特性。此外也討論當橋梁結構位於斷層近域時,由近斷層地震造成的速度脈衝所引致之應變率對於材料行為的影響,並將斷層近域與一般震區之橋柱斷面設計結果相互比較後檢視兩者之差異,最終得以確認高強度材料確實能夠比一般強度材料之使用量更為經濟。此外由分析結果可得知現有之橋梁即使鄰近斷層帶,在有通過耐震性能檢核的情況下,並且考慮應變率的貢獻後,可以推斷維持原本之結構設計是有機會抵抗近斷層地震的影響。
英文摘要 The study presents the seismic evaluation of columns based on the proposed stress and strain model for confined concrete used in New RC column. Furthermore, the load and displacement relationship of New RC column with flexural failure mode can be analyzed by conducting the moment-curvature analysis. Finally, the cyclical loading test of three New RC columns were carried out, and the corresponding backbone curves are compared to the simulated pushover curves with good accuracy.
Then, the proposed stress and strain model for confined concrete is used in New RC column design, and the use of New RC in place of normal strength concrete bridge columns is discussed. In addition, the influence of the strain rate caused by the velocity pulse from the near-fault earthquakes on the material behavior when the bridge structure is located near the fault is discussed, and the design results of the bridge structures in the near-fault are compared with the far field.
Examining the difference between the two cases, it is finally possible to reach to the conclusion that high strength materials can indeed be more economical than normal strength materials. In addition, from the analysis results, it can be known that if the existing bridge is adjacent to the fault zone and the seismic performance check is performed, as well as the contribution of strain rate, the original structural can be resistant to near-fault earthquakes.
論文目次 摘要 I
Abstract II
致謝 V
目錄 VI
表目錄 IX
圖目錄 XIV
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
1.3研究內容 2
第二章 文獻回顧 4
2.1斷層近域效應 4
2.2橫向鋼筋量設計要求 5
2.2.1 民國98年公路橋梁耐震設計規範與解說 5
2.2.2 ACI 318-14 8
2.3 柱構件軸壓強度之預測公式 11
2.4核心混凝土之應力應變曲線 12
2.4.1 Mander, J. B. 模式 12
2.4.2小室努模式 18
2.4.3 Cusson, D.及Paultre, P. 模式 22
2.4.4李昱勳模式 28
2.4.5楊世豪模式 32
2.5 應變率對材料及結構之影響 36
2.5.1混凝土材料 36
2.5.2鋼筋材料 40
2.5.3鋼筋混凝土構件 42
第三章 高強度混凝土柱之撓曲行為 63
3.1橋柱試體設計 63
3.2應力應變之分析 65
3.3彎矩曲率之分析 66
3.4力與變位之分析 69
第四章 應用高強度混凝土於一般震區之橋梁案例計算 95
4.1橋梁位置與結構配置 95
4.2設計地震基準 95
4.2.1工址地盤分類 96
4.2.1工址水平譜加速度係數 97
4.2.3實際案例計算 100
4.3一般強度鋼筋混凝土橋柱之分析與設計 102
4.3.1第一階段設計 102
4.3.2第二階段耐震性能評估與檢核 113
4.3.3實際案例計算 122
4.3.4小結 134
4.4高強度鋼筋混凝土橋柱之分析與設計 135
4.4.1斷面尺寸減量設計 135
4.4.2縱向鋼筋減量設計 138
4.4.3小結 150
第五章 應用高強度混凝土於斷層近域之橋梁案例計算 214
5.1橋梁位置與結構配置 214
5.2設計地震基準 214
5.2.1工址地盤分類 214
5.2.2工址水平譜加速度係數 214
5.2.3實際案例計算 217
5.3一般強度鋼筋混凝土橋柱之分析與設計 220
5.3.1第一階段設計 220
5.3.2第二階段耐震性能評估與檢核 220
5.3.3實際案例計算 221
5.3.4小結 234
5.4高強度鋼筋混凝土橋柱之分析與設計 235
5.4.1斷面尺寸減量設計 235
5.4.2縱向鋼筋減量設計 240
5.4.3小結 252
第六章 結論與建議 303
6.1結論 303
6.2建議 305
參考文獻 306
參考文獻 經濟部中央地質調查所,「臺灣活動斷層觀測系統及便民查詢服務圖臺-活動斷層分布及特性」,台灣,URL:http://fault.moeacgs.gov.tw/MgFault/,(2015)。
交通部,「公路橋梁耐震設計規範與解說」,台灣,(2009)。
ACI Committee 318., “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary,” American Concrete Institute, Farmington Hills, MI, 520 pp, (2014).
中華民國結構工程學會、中華民國結構工程學會、國家地震工程研究中心,「高強度鋼筋混凝土結構設計手冊」,科技圖書,台灣,(2009)。
Hwang, S. J., Hwang, G. J., Chang F. C., Chen, Y. C., and Lin K. C., “Design of Seismic Confinement of Reinforced Concrete Columns Using High Strength Materials,” Reinforced Concrete Columns with High Strength Concrete and Steel Reinforcement, SP-293, American Concrete Institute, Farmington Hills, Mich., pp. 2.1-2.14, (2013).
交通部,「公路橋梁設計規範」,台灣 (2009)
ACI Innovation Task Group 4, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, Farmington Hills, MI, 66 pp. (2007).
Mander, J. B., Priestley, M. J. N., Park, R., “Theoretical stress-strain model for confined concrete. “ J. Struct. Engrg., ASCE, Vol.114, No.8, pp. 1804-1826, (1988)
Mander, J. B., Priestley, M. J. N., and Park, R., “Seismic design of bridge piers.” Research Report No. 84-2, Univ. of Canterbury, New Zealand, (1984).
Popovics. S. “A numerical approach to the complete stress-strain curve of concrete.” Cement and Concrete Res., Vol.3, No.5, pp.583-599, (1973).
Sheikh, S. A., and Uzumeri, S. M., "Strength and ductility of tied concrete columns." J. Struct. Div., A.S.C.E., 106(5), 1079-1102, (1980).
小室努,超高強度コンクリートを用いた鉄筋コンクリート柱の圧縮特性に関する研究,博士論文,京都大學,日本,(2007)。
六車熙、渡辺史夫、勝田庄二、田中仁史,横拘束コンクリートの応力-ひずみ曲線のモデル化,セメント技術年報,日本,第34期,第429-432頁,(1980)。
崎野健治、孫玉平,コンファインド高強度コンクリートの中心圧縮性状に関する実験的研究,コンクリート工学年次論文集,日本,第15卷,第2期,第713-718頁,(1993)。
Cusson, D.; and Paultre, P., “ Stress-Strain Model for Confined High-Strength Concrete, "Journal of Structural Engineering, ASCE, Vol.121,No.3, pp. 468-477, (1995).
Cusson. D ., and Paultre. P., “High-strength concrete columns confined by rectangular ties.” J. Struct.Engrg., ASCE,121(3), (1994).
Nagashima, T., Sugano, S., Kimura, H., and Ichikawa, A., “Monotonic axial compression test on ultra-high-strength concrete tied columns. “ 10th World Conf. on Earthquake Engrg., Rotterdam, The Netherlands, 2983-2988, (1992).
Fafitis. A., Shah. S. P., “Lateral reinforcement for high-strength concrete columns.” ACI Spec. Publ.SP, pp. 87-12, Am. Concrete Inst. (ACI), pp. 213-232, (1985).
Richart, F.E., Brandtzaeg, A., and Brown, R. L., “A study of the failure of concrete under combined compressive stress.” Bull. No. 185, Engineering Experimental Station, University of Illinois, Urbana, III, (1928).
Sheikh, S. A., and Uzumeri, S. M., “ Analytical model for concrete confinement in tied columns. ”J.Struct. Div ., ASCE. 108(12), 2703-2722, (1982).
李昱勳,「方形New RC柱受高強度橫向鋼筋圍束作用下之應力應變曲線模式」,碩士論文,國立交通大學土木工學系程研究所,新竹,(2016)。
廖文正、胡瑋秀,「台灣高強度混凝土彈性模數建議公式研究」,科技部補助大專學生研究計畫研究成果報告,台北,(2016)。
楊世豪,「方形New RC柱受一般強度橫向鋼筋圍束作用下之應力應變曲線模式」,碩士論文,國立交通大學土木工程學系研究所,新竹,(2016)。
Cowell, W. L., "Dynamic Tests of Concrete Reinforcing Steels," Technical Report No. 394, U.S. Naval Civil Engineering Laboratory, Port Hueneme, California, (1965).
Cowell, W. L., "Dynamic Properties of Plain Portland Cement Concrete," Technical Report No. 447,U.S. Naval Civil Engineering Laboratory, Port Hueneme, California, (1966).
Mahin, M. A., and V. V. Bertero, "Rate of Loading Effect on Uncracked and Repaired Reinforced Concrete Members," EERC No. 72-9, Earthquake Engineering Research Center, University of California at Berkeley, (1972).
Atchley, B. L., and H. L. Furr, "Strength and Energy Absorption Capabilities of Plain Concrete under Dynamic and Static Loadings," Journal, American Concrete Institute, Vol. 64, No. 11, pp. 745-756, November (1967).
Watstein, D. "Effect of Strain Rate on the Compressive Strength and Elastic Properties of Concrete," Journal, American Concrete Institute, Vol. 49, No. 8, pp. 729-744, April (1953).
Filiatrault, A., and M. Holleran , "Stress-Strain Behavior of Reinforcing Steel and Concrete under Seismic Strain rates and low temperatures" Materials and Structures, Vol. 34, pp. 235-239, May (2001).
EIBL, J., "Concrete Structures under Impact and Impulsive Loading, " Bulletin D’information Report No.187, Comite Euro-International du Beton(CEB), Dubrovnik., (1988).
Kulkarni, S. M., and S. P. Shah, "Response of reinforced concrete beams at high strain rates," ACI Structural Journal, Vol. 95, No. 6, pp.705-715, Nov. (1998).
Wakabayashi, M., T. Nakamura, N. Yoshida, and S. IWai, "Dynamic Loading Effects on the Structural Performance of Concrete and Steel Materials and Beams," Proc. 7th WCEE, Istanbul, Vol. 6, pp. 271-278, (1980).
Malvar, L. J., and C. A. Ross, " Review of Strain Rate Effects for Concrete in Tension," Materials Journal, Vol. 95, No. 6, pp. 735-739, Nov. (1998).
Manjoine, M. J., "Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel," Journal of Applied Mechanics, Transactions, American Society of Mechanical Engineers, Vol. 11, pp. A211-A218, December (1944).
Vos, E., and H. W. Reinhardt, "Influence of Loading Rate on bond Behavior of Reinforcing Steel and Prestressing Strands," Materials and Structures, Vol. 15, No. 85, pp. 3-10, March (1982).
Riganti G., and E. Cadoni, "Numerical Simulation of the High Strain-Rate Behavior of Quenched and Self-Tempered Reinforcing Steel in Tension," Materials and Design, Vol. 57, pp. 156-167, May (2014).
Wang D., and G. Fan, " Effect of Strain Rate on Reinforced Concrete Columns," Advances in Engineering Research, Vol. 112, ICREET, pp. 473-477, (2016).
Shibata, M., "Analysis of Elastic-Plastic Behavior of a Steel Brace Subjected to Repeated Axial Force," Int. Jour. Solids Structures, Vol. 18, No. 3, pp. 217-228, (1982).
Ghannoum, W., V. Saouma, V. Saouma, K. Polkinghorne, M. Eck, and D. H. Kang, "Experimental Investigations of Loading Rate Effects in Reinforced Concrete Columns," Journal of Structural Engineering, Vol. 138, No. 8, pp. 1032-1041, August (2012).
Xiao, S. , J. Li, and Y. L. Mo, " Effect of Loading Rate on Cyclic Behavior of Reinforced Concrete Beams," Advances in Structural Engineering, pp. 1-12, Nov. (2017).
Zhang, H., and H. N. Li, " Dynamic Analysis of Reinforced Concrete Structure with Strain Rate Effect," Materials Research Innovations, Vol. 15, No. sup1, pp. s213-s216, (2011).
陳紀維,「高強度鋼筋混凝土橋柱耐震行為之研究」,碩士論文,國立臺灣大學土木工程學系研究所,台北 (2014)。
張國鎮、蔡益超、張荻薇、宋裕祺、廖文義、柴駿甫、洪曉慧、劉光晏、吳弘明、戚樹人、陳彥豪,「公路橋梁耐震能力評估及補強準則之研究」,國家地震工程研究中心,台灣,(2009)。
M. J. N. Priestley, F. Seible, and G. M. Calvi., “Seismic Design and Retrofit of Bridges,” John Wiley & Sons., (1996).
曾榮川、林正偉,台灣世曦工程顧問股份有限公司,「公路橋梁耐震性能設計規範草案案例研究181(附光碟)」,交通部臺灣區國道新建工程局,台灣,(2015)
交通部,「公路橋梁耐震性能設計規範草案與解說(修正版)」,台灣。
ACT-40, Seismic evaluation and retrofit of concrete buildings. Report No. SSC 96-01, Applied Technology Council, (1996).
D. Asprone, R. Frascadore, M. Di Ludovico, A. Prota, and G. Manfredi, "Influence of strain rate on the seismic response of RC structures," Engineering Structures, vol. 35, pp. 29-36, (2012).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw