進階搜尋


下載電子全文  
系統識別號 U0026-2308201801521900
論文名稱(中文) 高電壓開關之建製
論文名稱(英文) Developments of High Voltage Switches
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 楊昇樺
研究生(英文) Sheng-Hua Yang
學號 LA6051035
學位類別 碩士
語文別 英文
論文頁數 153頁
口試委員 指導教授-張博宇
口試委員-曲宏宇
口試委員-林銘杰
口試委員-陳孝輝
中文關鍵字 平行版電容量  脈衝功率系統  電漿噴流  間隙開關  軌道開關 
英文關鍵字 parallel plate capacitor bank  pulsed-power system  plasma jets  spark gap switch  rail gap switch 
學科別分類
中文摘要 本實驗室在未來要建造一個使用平行板電容庫(Parallel plate capacitor bank,簡稱PPCB)、輸出能量為16 kJ的脈衝功率系統(pulsed-power system),是個先將能量儲存再瞬間輸出的系統,此輸出的大電流可將細導線電離並產生電漿噴流,借此來模擬太陽風與行星間的交互作用。此系統的最大輸出電壓和電流約為80 kV和800 kA,上升時間(Rise time)約為1 μs。然而,系統在一開始測試時只會使用20 kV的電壓。此脈衝功率系統是由兩組電容組並聯所組成,放置於真空腔的兩側,系統總電容值為5 μF。每一個電容組是由五組0.5 μF的電容並聯,稱之為“一級電容”(One stage)。每一級的電容則由兩個1μF電容串聯而成。平行板傳輸線用於連接兩側電容組及中間的真空腔,主要目的是讓電容輸出的電流能導向真空腔內部。
因為系統的輸入需求為直流電,我們製作了一個2 kW高壓直流電源供應器,由低壓電源供應器提供500 V直流電源,經由脈衝電源控制器將直流電源轉為交流電源,用變壓器將電壓升高60倍後,再由倍壓器將交流電源轉為直流電源提供最高60 kV的電源。實驗中,我們最高測試到~30 kV的輸出電壓。
另外,系統的開關極為重要,不儘要能夠承受高電壓而不崩潰導通,而且開關時間要能被準確的控制。我們分別製作了自我崩潰間隙開關(self-breakdown spark gap switch)、可控間隙開關(controlled spark gap switch),及軌道開關(rail gap switch),在此特別研究其特性。
其中軌道開關(Rail gap switch)將用於PPCB,為了觸發軌道開關,我們建製了小型脈衝功率系統(Small pulsed-power system)和3級傳輸線變壓器(3-stage transmission line transformer)。
小型脈衝功率系統是由一個間隙開關(Spark gap switch)、一個40 nF或1μF的電容和一個脈衝產生器(Trigger pulse generator)所組成,間隙開關之間隙距離和開關內部氣壓是影響開關的主要因素。我們一共做了3個開關,經過多次的改良最後選用總間隙距離為8 mm的開關,加入氮氣並分別量測不同氣壓下之崩潰電壓。為了控制開關啟動的時間,我們使用觸發脈衝產生器(Trigger pulse generator)來控制間隙開關。觸發脈衝產生器的輸出電壓約為-20 kV,上升時間約為55 μs,藉由瞬間的高壓放電去觸發間隙開關使其導通。由訊號產生器提供訊號至觸發脈衝產生器使間隙開關發生崩潰導通現象。為了避免脈衝訊號由間隙開關回流至訊號產生器,我們在觸發脈衝產生器和訊號產生器間用光纖做連結,將電訊號轉成光訊號再轉回電訊號以防止訊號產生器的毀損。除此之外,在小型脈衝功率系統上需要量測時間不準度(jitter),此不準度的測試一方面是為了脈衝功率系統的安全性,另一方面是為了未來的實驗設定時間基準點。
為了解PPCB最大輸出電流,必須先量測並分析軌道開關的電感值。由小型脈衝功率系統輸出ㄧ個~-30 kV的脈衝訊號,並由3級傳輸線變壓器將訊號電壓在短時間(~150 ns)內提升,用於達到軌道開關內多通道放電(Multichannel discharge)的結果。
未來,軌道開關和一級電容的個別電感值必須量測,藉由量測ㄧ到三級電容和軌道開關的放電測試可以交叉比對得到個別的電感值,並完成架設脈衝功率系統。
英文摘要 A 16 kJ pulsed-power system using a parallel plate capacitor bank (PPCB) is being built. The large and short current pulse provided by the pulsed-power system can ionize thin wires and produce plasma jets to simulate interactions between solar winds and planets. The expected peak output voltage and current are ∼ 80 kV and up to ∼ 800 kA, respectively, with a rise time of ∼ 1 μs. Nevertheless, the system will be charged to 20 kV when it is first built. The system consists of 2 groups of energy bank connected in parallel and placed in both sides of a vacuum chamber. The total capacitance of the system is 5 μs. Each group consists of 5 stages connected in parallel. In each stage, 2 capacitors are connected in series and the capacitance of each capacitor is 1 μ F. Parallel plate transmission line is used to guide the current to the chamber.
Since the PPCB needs a DC power source, a 2 kW high voltage DC power supply was built. The high voltage DC power supply consists of a first stage DC power supply, a pulse generator, a transformer and a voltage doubler. The first stage DC power supply provides a DC source up to 500 V to the pulse generator. The DC power source is converted to AC power by the pulse generator. The voltage is then raised by 60 times by the transformer and is doubler by using a voltage doubler. Therefore, a DC power source up to 60 kV is expected. However, a ∼ 30 kV is only provided at this point due to safety concern.
Switches are very important for PPCB. They need to be able to hold high voltage without breaking down when capacitors are being charged. On the other hand, the breakdown of switches must be controlled. The characteristics of switches are studied here. Several spark gaps including self-breakdown spark gap switches, controlled spark gap switches, and a rail gap switch were built and tested. The rail gap switch is chosen as the main switch of PPCB. To trigger the rail gap switch, a small pulsed-power system and a 3-stage transmission line transformer were built.
The small pulse power system consists of a spark gap switch, a 40 nF or 1 μF capacitor and a trigger pulse generator. The gap distance between the electrodes and the gas pressure in the switch are the main factors effecting the breakdown voltages of the spark gap switch. Totally three spark gap switch were built. After many tests, we selected a spark gap switch design with a total gap distance of 8 mm and pressurized up to 4 atm using nitrogen gas. A trigger pulse generator is used to control the spark gap switch. The trigger pulse generator has an output voltage of ∼ -20 kV and a rise time of ∼ 55 μ s. The trigger pulse generator is triggered by a function generator. In order to prevent the electromagnetic pulse (EMP) damaging the function generator when the spark gap switch is activated, the optical fiber system is connected between the trigger pulse generator and the function generator to convert the electrical signal into an optical signal and back to the electrical signal. In the small pulse-power system, the jitter was measured. The test is for the safety of the PPCB, and the time reference point for any experiments in the future.
In order to estimate the peak current of the system, the inductance of the rail gap switch must be measured and analyzed. In order to generate a multichannel discharge in the rail gap switch, the 5 kV/ns fast trigger pulse is needed. A pulse of ∼ -30 kV is provided the small pulse-power system. The voltage of the pulse is raised by the 3-stage transmission line transformer with a short rise time ( ∼ 150 ns). Therefore, the multichannel discharge in the rail gap switch can be triggered by the fast pulse output from the small pulse-power system with the 3-stage transmission line transformer.
In the future, discharge voltages of the rail gap switch with one to three stages. The inductance of the rail gap switch and the one-stage can be estimated by cross comparison and the PPCB can be built.
論文目次 Contents
摘要.............i
Abstract.............iii
致謝 ............v
Content............vi
List of Figures............ix
List of Tables............ xiv
Chapter 1 Introduction..........1
1.1 Pulsed-power systems..........1
1.1.1 Marx generators........2
1.1.2 Inductive energy storage........3
1.1.3 Parallel plate capacitor banks.......4
1.2 The application of the pulsed-power system......8
Chapter 2 High voltage DC power supply system......10
2.1 System construction........10
2.2 Operating principle.........12
2.2.1 Pulse generator........13
2.2.2 Rectifier..........16
2.2.3 Voltage doubler.........17
2.3 Test methods and conclusion........19
2.3.1 Rectifier..........19
2.3.2 Voltage doubler.........20
2.4 Summary...........22
Chapter 3 Small pulsed-power system for the parallel plate capacitor banks
(PPCB)...........23
3.1 The trigger pulse generator.........24
3.1.1 System construction........24
3.1.2 Optical signal coupling........26
3.2 Spark gap switch..........30
3.2.1 System construction of the breakdown voltage test of the spark
gap switch..........31
3.2.2 Gas pressurization system.......32
3.2.3 Self-breakdown of the spark gap switch......36
3.2.3.1 Fundamental self-breakdown switch....36
3.2.3.2 Self-breakdown switch...... 39
3.2.3.3 Controlled-breakdown switch.......46
3.2.4 Conclusion.........57
3.3 Small pulsed-power system.......59
3.3.1 Schematic of the small pulse-power system.....59
3.3.1.1 Measurements of the jitter in the small pulsed-power
System.........60
3.3.2 Testing methods.........63
3.3.2.1 Discharge current.......63
3.3.2.2 Discharge voltage........64
3.3.2.3 Trigger pulse voltage......67
3.3.3 Conclusion.........71
3.4 Summary...........72
Chapter 4 Transmission line transformer for the small pulsed-power system...74
4.1 Negative output using a resistive load......74
4.1.1 System schematic.........75
4.1.2 Results......... 80
4.2 Negative output using a transmission line transformer.....83
4.2.1 System schematic.........83
4.2.2 Testing methods.........85
4.2.3 Results......... 86
4.3 Summary...........87
Chapter 5 Rail gap switch testing..........88
5.1 Schematics of the rail gap switch.......88
5.2 Testing methods.........92
5.3 Results of the testing..........94
Chapter 6 Future work...........102
Chapter 7 Summary.........105
Bibliography........... 110
Appendix........... 111
A1 Drawings of the self-breakdown switch.......111
A2 Drawings of the controlled-breakdown switch.....116
A3 Drawings of the frame of one stage........122
A4 Drawings of the rail gap switch........127
A5 Experimental operation flow.......146
A5.1 High voltage operation process......146
A5.2 The operation of the gas pressurization system....148
A5.3 The operation of the high voltage DC power supply.....150
A6 Manufacturers..........152
A7 Folder position.........153
參考文獻 [1] http://public.hofstragroup.com/3234.spec.pdf.
[2] https://en.wikipedia.org/wiki/Paschen
[3] https://www.alldatasheet.com/view.jsp?Searchword=Fod3184.
[4] https://www.mouser.tw/ProductDetail/Texas Instruments/
SN75451BP?qs=sGAEpiMZZMuiiWkaIwCK2SeqB8b8eM7H0JYVvIoGbXE
[5] https://www.mouser.tw/ProductDetail/Vishay Siliconix/IRF730PBF?qs=
[6] http://w55t92brh.homepage.t-online.de/wordpress/wp content/
uploads/BrochureSPIK2000A.pdf.
[7] http://www.mouser.com/ds/2/260/DCW05-spec 46707.pdf.
[8] Mei-Feng Huang. "rust romover using small pulsed-power system". Master Thesis,
July, 2017.
[9] Rishi Verma. "transmission line transformer for reliable and low-jitter triggering of
a railgap switch". AIP publishing LLC, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw