進階搜尋


下載電子全文  
系統識別號 U0026-2308201701410300
論文名稱(中文) 以空間關聯性優化密封元件品質均勻度之研究
論文名稱(英文) Optimizing the quality uniformity of sealing element with spatial correlation
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 105
學期 2
出版年 106
研究生(中文) 曹銓麟
研究生(英文) Chyuan-Lin Tsor
學號 R37031370
學位類別 碩士
語文別 中文
論文頁數 52頁
口試委員 指導教授-張裕清
口試委員-王泰裕
口試委員-蔡青志
口試委員-胡政宏
中文關鍵字 穩健式設計  空間關聯性  D型最佳化  均勻度 
英文關鍵字 Robust design  Spatial correlation  D-Optimal  uniformity 
學科別分類
中文摘要 在批次生產模式中,有些製程因子對批次內不同位置,產生的反應變量會有差異性。像是工業用的大烤箱、烘烤麵包的烤爐,循環熱能的流動與傳導會使同批次內每個元件或麵包受熱的程度不一致,導致同批次內的數百、數千個元件,每個元件間的尺寸與物理特性並非一致,所以批次空間內的各點之間具有差異性存在,本研究將會結合空間相關性的概念,來降低批次內的變異程度。本研究將探討丁腈橡膠(NBR)密封元件的熱壓成型製程,經由分析橡膠的壓縮試驗的反應變量,找出其最佳成型參數組合。熱壓成型為批次生產模式,每一批次產出數百個。由於大部分的研究都只探討總體均勻性的最大化,較少研究在批次內的空間效應。本研究在考量成本因素、時間與有限的實驗次數下,對分析出的可控與不可控實驗因子,以D-optimal找出共28組的設計矩陣,1組為1個批次,接著分析各批次反應變量,找出批次間各元件反應變量的空間相關性,並以穩健式設計降低不可控的噪音因子影響,最終找出在批次生產下,可降低整體元件反應變量分佈不均勻的一組最佳參數組合。以最佳參數組合批次生產數批,並比較個案公司現有製程的數據,來驗證本研究方法。本研究提出一種基於這些概念的方法,預期結合各元件之間的空間相關性資訊,找到更貼近現況的控制條件之最佳因子參數組合,以實現目標產品的均勻性與品質改善,結果可以作為批次生產模式之流程改善的參考。
英文摘要 In the batch production, there are differences between components in different locations within a batch. The differences are caused by process factors. The batch is regarded as a whole part in most quality improvement process. However, most studies tend to ignore such the spatial information of the components within the batch. This study is primarily by applying the robust designs with concept of Kriging method. First, we illustrate the problem as a constrained resources and find the design matrix by the D-optimal criterion. Next, we use Kriging method to explore the spatial regression model. Finally, the robust design approach is used to obtain the optimal setting of process parameters. The purpose of this study is to achieve a high uniformity of quality within a batch production by optimizing the values of factors associated with uniformity. In this way, it can improve the uniformity and stability of quality. We use Nitrile Butadiene Rubber (NBR) and hot forming process as a case. Initially, we select some spatial factors based on D-criterion design algorithm. After that, we obtain the optimal design matrix under experimental constraints. Then, we implement response variable(s) and find out the relevant structure. Through the relevant structure, we build a spatial regression model. Finally, we obtain the optimal factor combination. Results reveal that the pooled variance of the quality characteristics obtained by the optimized combination is lower than original one. It means that the uniformity improves. The results indicate that the spatial correlation is meaningful for effective quality improvement in the batch production. The spatial correlation concept in this study can be used in different industries and fields. Hence, it could be also as a reference for quality improvement.
論文目次 摘要 II
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第四節 研究步驟 4
第五節 論文架構 5
第二章 文獻探討 6
第一節 測量的均勻度 7
第二節 表面變異的建模方法 8
一、不考慮空間性的建模方法 8
二、考慮空間性的建模方法 9
第三節 克利金模型 11
一、克利金概述 11
二、數學模型 11
第四節 穩健式參數設計 14
第五節 電腦生成設計 14
一、準則 15
二、交換演算法 15
第六節 橡膠與熱壓成型 16
一、橡膠 16
二、熱壓成型 17
第三章 問題描述與研究方法 18
第一節 問題描述 18
一、密封元件與製程 19
二、品質特性不均勻問題 21
三、品質特性均勻化 22
第二節 研究架構 24
第三節 模型建立 24
一、模型假設與符號 24
二、參數估計 26
第四節 相關性模型建立 27
一、判定批次內共變性 27
二、驗證批次內共變性 27
三、最優化設計矩陣的演算法 29
四、雙反應曲面法 30
第四章 個案實作與數據分析 31
第一節 實驗介紹 32
第二節 D最佳化設計 37
一、資料處理與假設 37
二、建立最佳化設計矩陣 38
第三節 空間相關模型適配 39
第四節 控制變量最佳化 43
第五節 驗證實驗 45
第六節 小結 46
第五章 結論與建議 47
第一節 結論 47
第二節 建議 48
參考文獻 49
參考文獻 中文文獻
(1).林明俊(民98)。高分子微流道熱壓成型模擬與實驗驗證之研究。中原大學機械工程學系博士論文,桃園市。
(2).張娜,陳天寧,王小麟(民98)。聚合物微結構熱壓成形設備的溫度控制裝置研究。西安交通大學機械工程學院,陝西 西安。
(3).張銘宇(民100)。天然橡膠/聚己內酯形狀記憶高分子環保合膠之研究。中國文化大學工學院化學工程與材料工程學系暨奈米材料碩士班碩士論文,台北市。
(4).張耀文(民100)。聚碳酸酯板材熱壓成型研究。國立台灣大學工學院機械工程學研究所博士論文,台北市。
(5).賀永,傅建中,陳子辰(民94)。聚合物微流控芯片熱壓成型的建模研究,浙江大學機械工程學系,浙江 杭州。
(6).賀永,傅建中,陳子辰(民97)。微熱壓成型過程聚合物流動特性研究,浙江大學機械工程學系微系統研究與發展中心,浙江 杭州。

英文文獻
(1).Bao, L., Huang, Q., & Wang, K. (2016). Robust Parameter Design for Profile Quality Control. Quality and Reliability Engineering International, 32(3), 1059-
1070.
(2).Bao, L., Wang, K., & Jin, R. (2014). A hierarchical model for characterising spatial wafer variations. International Journal of Production Research, 52(6), 1827-
1842.
(3).Biswas, A., & Si, B. C. (2013). Model averaging for semivariogram model parameters. Advances in Agrophysical Research, 4, 81-96.
(4).Boning, D. S., & Chung, J. E. (1996). Statistical metrology: Understanding spatial variation in semiconductor manufacturing. Microelectronic Manufacturing (pp. 16-26). International Society for Optics and Photonics.
(5).Chernoff, H. (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24(4), 586-602.
(6).Chowdhury, A. R., & Krishna Prasad, G. (1998). Reduction of Gold-Plating Thickness Variation. Quality Engineering, 11(1), 61-67.
(7).Cook, R. D., & Nachtsheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs. Technometrics, 22(3), 315-324.
(8).Cressie, N. A. (1993). Statistics for Spatial Data. Statistics for Spatial Data, Revised Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA.
(9).Czitrom, V., Mohammadi, P., Flemming, M., & Dyas, B. (1998). Robust design experiment to reduce variance components. Quality Engineering, 10(4), 645-655.
(10).de Aguiar, P. F., Bourguignon, B., Khots, M., Massart, D., & Phan-Than-Luu, R. (1995). D-optimal designs. Chemometrics and Intelligent Laboratory Systems, 30(2), 199-210.
(11).Geedipalli, S., Rakesh, V., & Datta, A. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359-368.
(12).Guo, R.-S., & Sachs, E. (1993). Modeling, optimization and control of spatial uniformity in manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 6(1), 41-57.
(13).Haran, M. (2011). Gaussian random field models for spatial data. Handbook of Markov Chain Monte Carlo, 449-478. Eds. Brooks, S. R., Gelman, Andrew, Jones, G. L. and Meng, X. L. CRC.
(14).Huang, X., Zhou, Q., Zeng, L., & Li, X. (2015). Monitoring Spatial Uniformity of Particle Distributions in Manufacturing Processes Using the K Function. IEEE Transactions on Automation Science and Engineering.
(15).Hughes-Oliver, J. M., Lu, J.-C., Davis, J. C., & Gyurcsik, R. S. (1998). Achieving uniformity in a semiconductor fabrication process using spatial modeling. Journal of the American Statistical Association, 93(441), 36-45.
(16).Johnson, M. E., & Nachtsheim, C. J. (1983). Some guidelines for constructing exact D-optimal designs on convex design spaces. Technometrics, 25(3), 271-277.
(17).Jung, J.-R., & Yum, B.-J. (2011). Uniformity and signal-to-noise ratio for static and dynamic parameter designs of deposition processes. The International Journal of Advanced Manufacturing Technology, 54(5-8), 619-628.
(18).Kiefer, J., & Wolfowitz, J. (1959). Optimum designs in regression problems. The Annals of Mathematical Statistics, 271-294.
(19).Kim, H. J., Kim, K. J., & Kwak, D. S. (2010). A case study on modeling and optimizing photolithography stage of semiconductor fabrication process. Quality and Reliability Engineering International, 26(7), 765-774.
(20).Lin, J., & Wang, K. (2011). Online parameter estimation and run-to-run process adjustment using categorical observations. International Journal of Production Research, 49(13), 4103-4117.
(21).Martin, J. D., & Simpson, T. W. (2005). Use of kriging models to approximate deterministic computer models. AIAA journal, 43(4), 853-863.
(22).Montgomery, D. C. (2008). Design and analysis of experiments.New York, NY: John Wiley & Sons.
(23).Myers, R. H., Khuri, A. I., & Vining, G. (1992). Response surface alternatives to the Taguchi robust parameter design approach. The American Statistician, 46(2), 131-139.
(24).Nair, V. N., Abraham, B., MacKay, J., Box, G., Kacker, R. N., Lorenzen, T. J., Nelder, J. A. (1992). Taguchi's parameter design: a panel discussion. Technometrics, 34(2), 127-161.
(25).Ramirez, J., & Taam, W. (2000). An autologistic model for integrated circuit manufacturing. Journal of Quality Technology, 32(3), 254.
(26).Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA journal, 39(12), 2233-2241.
(27).Simpson, T. W., Poplinski, J., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17(2), 129-150.
(28).Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika, 12(1/2), 1-85.
(29).Steinberg, D. M., & Bursztyn, D. (1998). Noise factors, dispersion effects, and robust design. Statistica Sinica, 67-85.
(30).Taam, W. (1998). A case study on process monitoring for surface features. Quality and Reliability Engineering International, 14(4), 219-226.
(31).Taam, W., & Hamada, M. (1993). Detecting spatial effects from factorial experiments: An application from integrated-circuit manufacturing. Technometrics, 35(2), 149-160.
(32).Triefenbach, F. (2008). Design of experiments: the D-optimal approach and its implementation as a computer algorithm. Bachelor's Thesis in Information and Communication Technology.
(33).Van Beers, W. C., & Kleijnen, J. P. (2004). Kriging interpolation in simulation: a survey. Paper presented at the Simulation Conference, 2004. Proceedings of the 2004 Winter.
(34).Wald, A. (1943). On the efficient design of statistical investigations. The annals of mathematical statistics, 14(2), 134-140
(35).Welch, W., Yu, T., Kang, S. M., & Sacks, J. (1990). Computer experiments for quality control by parameter design. Journal of Quality Technology, 22(1), 15-22.
(36).Yin, J., Ng, S. H., & Ng, K. M. (2011). Kriging metamodel with modified nugget-effect: The heteroscedastic variance case. Computers & Industrial Engineering, 61(3), 760-777.
(37).Zhao, H., Jin, R., Wu, S., & Shi, J. (2011). PDE-constrained Gaussian process model on material removal rate of wire saw slicing process. Journal of Manufacturing Science and Engineering, 133(2), 021012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw