進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201618351600
論文名稱(中文) 摻雜元素於矽薄膜負極對鋰離子電池效能之影響
論文名稱(英文) Effects of dopants in silicon thin films on the performance of lithium-ion battery
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 王時安
研究生(英文) Shih-An Wang
學號 N56034423
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-劉全璞
口試委員-黃肇瑞
口試委員-蔡文達
口試委員-林士剛
口試委員-王瑞琪
中文關鍵字 鋰離子電池    摻雜  薄膜電極  快速充放電 
英文關鍵字 Lithium-ion battery  Silicon  Doping  Thin film electrode  High C-rate test 
學科別分類
中文摘要   由於純矽材料的導電性非常差,在鋰離子電池中作為負極時常常因為阻抗過大而使電池表現大大偏離理論值,為了提高矽活性材料在電池內部的表現,本實驗希望製作不同參雜元素之矽薄膜極片,探討導電性對於矽負極鋰離子電池之影響。首先選用純矽基板和高導電率的p型矽基板及n型矽基板製作成矽靶材,利用電子蒸鍍機將矽薄膜鍍製於銅箔基板上,在進行熱退火後,將矽薄膜極片送入SEM、XRD及TEM進行結晶性分析,得到矽薄膜為完全非結晶的結構。接著利用SIMS進行成分分析確定雜質是否有進入矽薄膜內部並且分布狀況是否均勻,再將退火後的矽薄膜極片以四點探針量測其導電性值計算出電阻率,觀察矽薄膜與矽基板之間導電性的變化。
  將製作完成的極片作為待測電極,鋰金屬作為參考電極組裝為半電池並進行電化學測試,設定矽薄膜負極半電池在化成反應後進行充放電速率的測試,探討在高電流充放電的狀態下,不同雜質摻雜後對於電池表現之影響,發現摻雜砷的n型薄膜具有最好的電池表現,而摻雜硼的p型矽薄膜則會大大降低矽薄膜電池的循環壽命。在循環充放電二十圈及兩百圈測量其阻抗變化探討其中的電化學機制,最後將化成後及循環充放電一百圈後的的電池在完全去鋰化後,將鋰電池拆開後觀察矽薄膜之表面形貌變化,發現表面產生網狀的裂紋,是造成電容值隨著圈數逐漸增加的原因。
英文摘要   Purified silicon without impurities is bound to exhibit low conductance. When pure silicon is employed as an active material for lithium-ion battery, the performance of the battery is always poor because of the low conductivity. To enhance the performance of silicon anode lithium-ion battery, we intend to investigate the doping effect in silicon on batteries performance. Our approach is conducted through silicon thin film deposited by electron beam evaporation, when silicon targets are prepared by grinding various type of silicon wafer, including undoped silicon, p-type silicon and n-type silicon into small pieces. We successfully deposit silicon films on copper substrate with good adhesion. Scanning Electron Microscopy, Multipurpose X-Ray Thin-Film Diffractometer and Transmission Electron Microscopy are used to investigate the crystallinity of the as-deposited silicon films. Secondary Ion Mass Spectrometer is employed to confirm the existence and distribution of impurities in the silicon films. Four-point probe measurement method is used to measure the resistance of the as-deposited silicon thin films.
  After finishing material characterization, lithium metal is adopted as reference electrode, while silicon thin film is taken as test electrode. Coin cells is studied by electrochemical test to study doping effect by observing battery performance. Electrochemical impedance spectroscopy is also used to measure the impedance change between 20cycles and 200cycles of silicon anode coin cell. The coin cells after of 3cycles and 100cycles are dissembled to studied the morphology change of silicon active materials during charge and discharge.
論文目次 中文摘要 ……………………………………………………………………………. I
Abstract …………………………………………………………………………….. II
致謝 …………………………………………………………………………….. VIII
目錄 ……..………………………………………………………………………… IX
表目錄 …………………………………………………………………………… XI
圖目錄 …………………………………………………………………………… XI
第一章 序論 ………………………………………………………………………... 1
 1.1 前言 ………………………………………………………………………….. 1
 1.2 研究動機與目的 …………………………………………………………….. 2
第二章 理論基礎與文獻回顧 ……………………………………………………... 3
 2.1 鋰離子電池 ………………………………………………………………….. 3
  2.1.1 鋰離子電池的基本概念 ………………………………………………... 3
  2.1.2 鋰離子電池的工作原理 ………………………………………………... 4
  2.1.3 鋰離子電池的特性 ……………………………………………………... 5
  2.1.4 設計高電容的負極材料 ………………………………………………. 12
 2.2 負極材料的介紹 ………………………………………………………….... 14
  2.2.1 矽元素的簡介 …………………………………………………...…….. 14
  2.2.2 純矽作為負極材料應用於鋰電池……………………………………... 16
 2.3 矽負極材料的瓶頸 …………………………………………………......….. 21
  2.3.1 活性材料的崩解 …………………………………………………...….. 21
  2.3.2 固態電解質膜的形成 …………………………………………...…….. 22
  2.3.3 鋰離子殘留 …………………………………………………...……….. 23
  2.3.4 與表面氧化層發生反應……………………………..…………...…….. 23
  2.3.5 活性材料的團聚 ………………………………………………...…….. 24
 2.4 提升矽負極性能的方法 ……………………………………………..…….. 27
  2.4.1 複合材料 ………………………………………………………………. 27
  2.4.2 粒徑大小的控制 ………………………………………………………. 32
  2.4.3 控制電壓區間 …………………………………………………………. 33
  2.4.4 黏著劑 …………………………………………………………………. 34
  2.4.5 電解液 …………………………………………………………………. 38
  2.4.6 奈米結構 ………………………………………………………………..40
第三章 實驗設備與步驟 …………………………………………………………. 47
 3.1 材料準備與實驗流程 ……………………………………………………… 47
  3.1.1 實驗材料與藥品 ………………………………………………………. 47
  3.1.2 實驗流程 ………………………………………………………………. 48
  3.1.3 製程設備 ………………………………………………………………. 49
 3.2 材料分析 …………………………………………………………………… 51
  3.2.1 多功能X光薄膜繞射儀 ………………………………………...……. 51
  3.2.2 高解析掃描式電子顯微鏡 ……………………………………………. 52
  3.2.3 穿透式電子顯微鏡 ……………………………………………………. 52
  3.2.4 二次離子質譜儀 ………………………………………………………. 53
  3.2.5 四點探針 ………………………………………………………………. 54
 3.3 鋰電池充放電性質量測 …………………………………………………… 55
  3.3.1 鈕扣型電池組裝 ……………………………………...……………….. 55
  3.3.2 充放電測試 ……………………………………………….……...……. 55
  3.3.3 交流阻抗分析………………………………………………...…...……. 56
第四章 實驗結果與討論 …………………………………………………………. 57
 4.1 矽薄膜形貌分析 ……………………………………...……………………. 57
 4.2 矽薄膜熱退火處理 ………………………………………………………… 59
  4.2.1 熱退火提高薄膜接觸性 ......................................................................... 59
  4.2.2 熱退火結晶性分析 ……………………………………………………. 64
  4.2.3 熱退火TEM分析 …………………………………………………….. 67
  4.2.4 四點量測電性分析 ……………………………………………………. 69
  4.2.5 二次離子質譜儀分析 …………………………………………………. 72
 4.3 矽薄膜負極電化學測試 …………………………………………………… 74
  4.3.1 純矽薄膜電化學分析 …………………………………………………. 74
  4.3.2 p型/n型矽薄膜電化學分析 ………………………………………….. 77
  4.3.3 矽薄膜阻抗分析 ………………………………………………………. 83
 4.4 矽薄膜負極循環後形貌分析 ……………………………………………… 85
第五章 結論 ………………………………………………………………………. 88
參考文獻 …………………………………………………………………………... 89

表目錄

表 2-1 矽詳細的物理性質 ………………………………………………………. 15
表 2-2 鋰矽合金系統所對應的晶體結構、密度、理論電容值和體積變化 …. 18
表 3-1 實驗所使用的材料與化學試劑 …………………………………………. 47

圖目錄

圖 2-1 不同二次電池能量密度的比較 …………………………………………… 6
圖 2-2 鋰電池開路電壓之位能示意圖 …………………………………………… 6
圖 2-3 鋰電池充放電示意圖 ……………………………………………………… 7
圖 2-4 LiXCoO2層狀結構示意圖 …………………………………………………. 7
圖 2-5 LiXMn2O4尖晶石結構示意圖 ……………………………………………... 8
圖 2-6 石墨層狀結構示意圖 ……………………………………………………… 8
圖 2-7 鋰電池充放電特性曲線(Voltage vs. Capacity) ……...…………….......... 11
圖 2-8 電池內組模擬圖 ………………………………………………………….. 11
圖 2-9 鋰電池循環壽命特性曲線(Capacity vs. Cycles) ……………………….. 12
圖 2-10 全電池的總電容值對負極電容值(CA)作圖,正極考慮了140mAh/g (LiCoO2)及200mAh/g (LiMnO2),圖可分為兩部分,一部分為隨著CA快速提升的區域當CA值分布於300-1200mAh/g,另一部分為飽和區當CA大於1200mAh/g ………………………………………………………………………… 13
圖 2-11 矽的晶體結構 (a)空間填充圖,(b)鍵結示意圖 ……………………… 15
圖 2-12 鋰矽合金系統在溫度為415℃時,電位對鋰含量作圖 ……………… 19
圖 2-13 鋰矽合金相圖 …………………………………………………………… 19
圖 2-14 Ni30Si70循環充放電曲線:(a)截止電壓為0V,(b)截止電壓為50mV .. 20
圖 2-15 微米(SiM: 1-10um)及奈米(SiN: 10-100nm)矽負極循環充放電曲線 ….. 20
圖 2-16 鋰電池10微米矽顆粒負極定電流充放電曲線,電流設定為100mA/g,電壓區間為0.0-2.0V ( vs Li/Li+ ) …………………………………………………. 25
圖 2-17 由恆定微電量低定法(GIFT)測量鋰電池矽負極在不同電位下的內組 ………………………………………………………………………………….. 25
圖 2-18 鋰電池矽負極定電流充放電曲線,左側為正常的去鋰化曲線,右側為電池受到1.3kg/cm2的壓應力 ………………………………………………………. 26
圖 2-19 矽活性材料的破裂機制 ………………………………………………… 26
圖 2-20 矽負極固態電解質薄膜增厚機制圖 …………………………………… 26
圖 2-21活性材料/非活性材料奈米複合物在鋰化後形貌變化的模型 ………… 29
圖2-22 矽/氧化矽複合材料表面形貌圖 ………………………………………… 29
圖 2-23矽/氧化矽複合材料在不同退火條件下的循環壽命測試曲線 ………… 29
圖 2-24矽碳混合複合材料(MCMB)在鋰化後形貌變化的模型 ………………. 30
圖 2-25奈米碳薄膜包覆奈米矽顆粒的高解析度影像圖 ……………………..... 31
圖 2-26奈米薄膜碳包覆於奈米矽顆粒後電池特性曲線變化比較 ……………. 31
圖 2-27矽顆粒穩定性受到粒徑大小影響之模型 ………………………………. 33
圖 2-28比較PVdF/Na-CMC與矽之間鍵結的強度,圖中敘述了Na-CMC 與矽表面之間產生脫水反應形成酯鍵強化黏著劑與矽材料之間的接觸性 ………... 35
圖 2-29 (a) PVdF薄膜,(b) PAANa薄膜的XRD圖譜,(c) PVdF薄膜與(d) PAANa薄膜的光學顯微鏡影像圖 ………………………………………………………... 36
圖 2-30 (a,c) PVdF,(b,d) PAANa充放電前後截面積SEM影像分析 ………. 36
圖 2-31 (a) PVdF,(b) PAANa與矽活性材料及銅箔之間黏附性之比較 …….. 37
圖 2-32碳矽複合材料與不同黏著劑之放電曲線(a)10wt% PVdF,(b) 10wt% CMCNa,(c) 10wt% PAANa,(d) 20wt% PAANa,(e) 30wt% PAANa ……… 37
圖 2-33矽負極薄膜在含有VC及未含有VC的電解液系統之循環壽命及庫倫效率比較 ……………………………………………………………………………... 39
圖 2-34矽負極薄膜在含有FEC及未含有FEC的電解液系統之循環壽命及庫倫效率比較 ………………………………………………………………………….. 39
圖 2-35矽微米薄膜充放電前後截面積形貌圖 ………………………………… 41
圖 2-36矽薄膜在不同充放電速率下循環壽命測試 …………………………… 41
圖 2-37不同結構之矽材在循環充放電後的形貌變化模型(a)矽薄膜與矽顆粒都因體積改變而破裂,(b)矽奈米線在充放電後仍維持原來的形貌 …………….. 43
圖 2-38矽奈米線的電池量測數據,(a)循環伏安法,(b)前兩圈化成反應特性曲線,(c)速率測試特性曲線,(d)前十圈循環壽命圖 …………………………………... 43
圖 2-39矽/奈米碳管複合材料合成示意圖,首先利用CVD製成成長垂直於基板的奈米碳管,接著通入矽烷沉積矽薄膜於碳管上而得到複合材料 …………… 44
圖 2-40矽/奈米碳管複合材料的電池量測數據,(a)循環壽命圖,(b)充放電速率測試循環圖,(c)充放電特性曲線,(d)速率測試特性曲線 ……………………… 44
圖 2-41三維多孔性結構矽材料表面形貌圖 ……………………………………. 46
圖 2-42三維多孔性結構矽材料的電池量測數據,(a)循環壽命圖,(b)充放電速率測試循環圖,(c)充放電特性曲線,(d)速率測試特性曲線 ……………………… 46
圖 3-1 實驗流程圖 ……………………………………………………………….. 48
圖 3-2 電子蒸鍍的工作原理 …………………………………………………….. 50
圖 3-3 四點探針工作原理 ……………………………………………………….. 54
圖 3-4 鋰離子電池組裝示意圖 ………………………………………………….. 56
圖 4-1銅箔基板表面形貌圖 ……………………………………………………... 58
圖 4-2矽薄膜表面形貌圖及截面圖 …………………………………………...… 58
圖 4-3 (a)退火前,(b)退火後極片截面形貌圖 …………………………………. 61
圖 4-4 (a)退火前矽薄膜充放電特性曲線圖,(b)退火前矽薄膜十圈循環壽命圖 …………………………………………………………………………………. 62
圖 4-5 (a)退火後矽薄膜充放電特性曲線圖,(b)退火後矽薄膜十圈循環壽命圖 ………………………………………………………………………………….. 63
圖 4-6 (a)純矽薄膜,(b) p型矽薄膜退火前後XRD圖譜比較,(c) n型矽薄膜退火前後,(d)三種薄膜退火後XRD圖譜比較 ………………………………………. 65
圖 4-7 純矽薄膜退火前(a)低倍率TEM影像,(b)高倍率TEM影像,(c)矽薄膜與銅箔基板接觸之高倍率TEM影像,(d)電子繞射圖 ……………………………... 67
圖 4-8 純矽薄膜退火後(a)低倍率TEM影像,(b)高倍率TEM影像,(c)矽薄膜與銅箔基板接觸之高倍率TEM影像,(d)電子繞射圖,(e)高倍率STEM影像 …… 68
圖 4-9 (a)純矽薄膜,(b) p型矽薄膜退火前後電性曲線比較,(c) n型矽薄膜退火前後,(d)三種薄膜退火後電性曲線比較 ……………………………………….. 70
圖 4-10 (a) p型矽薄膜,(b) n型矽薄膜退火後二次離子圖譜 …………………. 73
圖 4-11 純矽薄膜之(a)前三圈化成特性曲線,(b)充放電速率測試曲線,設定其化成電流為0.013mA(0.05C),接續10圈的電流為0.026mA(0.1C),接續10圈的電流為0.13mA(0.5C),接續10圈的電流為0.26mA(1C),(c)充放電速率測試特性曲線,(d)循環壽命測試圖,設定其化成電流為0.013mA(0.05C),接續200圈的電流為0.26mA(1C) ……………………………………………………………. 75
圖 4-12 p型矽薄膜之(a)前三圈化成特性曲線,(b)充放電速率測試曲線,設定其化成電流為0.013mA(0.05C),接續10圈的電流為0.026mA(0.1C),接續10圈的電流為0.13mA(0.5C),接續10圈的電流為0.26mA(1C),(c)充放電速率測試特性曲線,(d)循環壽命測試圖,設定其化成電流為0.013mA(0.05C),接續200圈的電流為0.26mA(1C) …………………………………………………………..…. 78
圖 4-13 n型矽薄膜之(a)前三圈化成特性曲線,(b)充放電速率測試曲線,設定其化成電流為0.013mA(0.05C),接續10圈的電流為0.026mA(0.1C),接續10圈的電流為0.13mA(0.5C),接續10圈的電流為0.26mA(1C),(c)充放電速率測試特性曲線,(d)循環壽命測試圖,設定其化成電流為0.013mA(0.05C),接續200圈的電流為0.26mA(1C) ……………………………………………………………………... 81
圖 4-14 純矽薄膜/p型矽薄膜/n型矽薄膜(a)循環充放電二十圈後,(b)循環充放電兩百圈後進行交流阻抗測試而得到能斯特(Nernst)圖譜 ………………………. 84
圖 4-15 (a)純矽薄膜兩百圈循環壽命圖,(b)前三圈充放電後表面形貌圖 ……. 86
圖 4-16 (a)純矽薄膜兩百圈循環壽命圖,(b)兩百圈循環充放電後表面形貌圖 …………………………………………………………………………………... 87
參考文獻 [1] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
[2] Bodie Douglas, Darl McDaniel,John Alexander. Concepts and Models of Inorganic Chemistry 3rd
[3] G. A. N. G. Pistoia, Lithium batteries - Science and technology. (KluwerAcademic Publishers, Boston, 2004).
[4] G. A. N. G. Pistoia, Lithium batteries - Science and technology. (KluwerAcademic Publishers, Boston, 2004).
[5] 陳榮志, 鋰電池充電器性能與安全測試之研究, 2009.
[6] H. Kim, J. Choi, H. J. Sohn, T. Kang, The insertion mechanism of lithium intoMg2Si anode material for Li-ion batteries. Journal of the Electrochemical Society 146, 4401-4405 (1999).
[7] M. Yoshio, T. Tsumura, N. Dimov, Electrochemical behaviors of silicon based anode material. Journal of Power Sources 146, 10-14 (2005).
[8] J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry:Principles of Structure and Reactivity, 4th ed., HarperCollins, New York,USA (1993).
[9] F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, AdvancedInorganic Chemistry, John Wiley & Sons, USA (1999).
[10] D. R. Lide, Chemical Rubber Company Handbook of Chemistry and Physics, 77th ed., CRC Press, Florida, USA (1996).
[11] C. R. Hubbard, H. E. Swanson, and F. A. Mauer, “Silicon PowderDiffraction Standard Reference Material”, J. Appl. Crystallogr., 8, 45-48(1975).
[12] A. N. Dey, Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of the Electrochemical Society 118, 1547-& (1971).
[13] R. A. Sharma, R. N. Seefurth, Thermodynamic Properties of Lithium-SiliconSystem. Journal of the Electrochemical Society 123, 1763-1768 (1976).
[14] B. A. Boukamp, G. C. Lesh, R. A. Huggins, All-Solid Lithium Electrodes with Mixed-Conductor Matrix. Journal of the Electrochemical Society 128, 725-729 (1981).
[15] C. J. Wen, R. A. Huggins, Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System. Journal of Solid State Chemistry 37, 271-278 (1981).
[16] C. Vandermarel, G. J. B. Vinke, W. Vanderlugt, The Phase-Diagram of the System Lithium-Silicon. Solid State Communications 54, 917-919 (1985).
[17] M. N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters 7, A93-A96 (2004).
[18] J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J. P. Peres, D. Talaga, M. Couzi, J. M. Tarascon, Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Advanced Functional Materials 17, 1765-1774 (2007).
[19] G. X. Wang, J. Yao, H. K. Liu, Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochemical and Solid State Letters 7, A250-A253 (2004).
[79] H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 135, 181-191 (2000).
[20] P. Limthongkul, Y. I. Jang, N. J. Dudney, Y. M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia 51, 1103-1113 (2003).
[21] A. Netz, R. A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. Journal of Power Sources 119, 95-100 (2003).
[22] T. D. Hatchard, J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society 151, A838-A842 (2004).
[23] J. Li, J. R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of the Electrochemical Society 154, A156-A161 (2007).
[24] C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 39, 3115-3141 (2010).
[25] C. J. Wen, R. A. Huggins, Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System. Journal of Solid State Chemistry 37, 271-278 (1981).
[26] M. Winter, J.O. Besenhard, Electrochim. Acta 45 (1999) 31.
[27] R. Benedek, M.M. Thackeray, J. Power Sources 110 (2002) 406.
[28] U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003.
[29] Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306–A309
[30] Ryu JH, Kim JW, Sung Y-E, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306–A309
[31] Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103–A108
[32] J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh, Electrochem. Solid-State Lett. 7 (2004) A306.
[33] P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 55, 6332-6341 (2010).
[34] X. D. Wu, Z. X. Wang, L. Q. Chen, X. J. Huang, Ag-enhanced SEI formation
on Si particles for lithium batteries. Electrochemistry Communications 5, 935-939 (2003).
[35] C. K. Chan, R. Ruffo, S. S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 189, 1132-1140 (2009).
[36] K. Xu, "Charge-transfer" process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. Journal of the Electrochemical Society 154, A162-A167 (2007).
[37] T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries. Journal of the Electrochemical Society 152, A2151-A2154 (2005).
[38] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414-429 (2012).
[39] H. Lia, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y.J. Mo, N. Pei, Solid State Ionics 135 (2000) 181.
[40] G.W. Zhou, H. Li, H.P. Sun, D.P. Yu, Y.Q. Wang, X.J. Huang, L.Q. Chen, Z. Zhang, Appl. Phys. Lett. 75 (1999) 2447.
[41] U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003.
[42] M. Stjerndahl, H. Bryngelsson, T. Gustafsson, J.T. Vaughey, M.M. Thackeray, K. Edstrom, Electrochim. Acta 52 (2007) 4947.
[43] H. Li, L. Shi, W. Lu, X. Huang, L. Chen, J. Electrochem. Soc. 148 (2001) A915.
[44] Huggins RA (1999) Lithium, alloy negative electrodes. J Power Sources 81–82:13–19
[45]Mao O et al (1999) Active/inactive nanocomposites as anodes for Li-ion batteries. Electrochem Solid-State Lett 2:3–5
[46] Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J Power Sources 81–82: 237–242
[47] Wang W (2009) Silicon Based Nanocomposites as Lithiumion Battery Anodes. PhD dissertation, Carnegie Mellon University
[48] Courtney IA, McKinnon WR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J Electrochem Soc 146:59–68
[49] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ionstorage material. Science 276:1395–1397
[50] W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources 140, 139-144 (2005).
[51] M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F. M. Petrat, C. Veit, Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochemical and Solid State Letters 8, A516-A520 (2005).
[52] M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F. M. Petrat, A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 1566-1568 (2005).
[53] G. X. Wang, J. Yao, H. K. Liu, Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochemical and Solid State Letters 7, A250-A253 (2004).
[54] SH. Ng, J. Wang, D. Wexler, K. Konstantinov, ZP. Guo, HK. Liu Angewandte Chemie International Edition 45 (41), 6896-6899 (2006)
[55] Kim, H.; Seo, M.; Park, M. H.; Cho, J., Angewandte Chemie International Edition, 2010, 49, 2146.
[56] Yang, J.; Winter, M.; Besenhard, J. O., Solid State Ionics, 1996, 90, 281.
[57] H. Jung, M. Park, Y.G. Yoon, G.B. Kim, S.K. Joo, J. Power Sources 115 (2003) 246.
[58] J. R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science 4, 56-72 (2011).
[59] W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, N. L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid State Letters 8, A100-A103 (2005).
[60] W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, N. L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid State Letters 8, A100-A103 (2005).
[61] B. Lestrie, S. Bahri, I. Sandu, L. Roue, D. Guyomard, On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications 9, 2801-2806 (2007).
[62] N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, M. Winter, Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid State Letters 11, A76-A80 (2008).
[63] D. Mazouzi, B. Lestriez, L. Roue, D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life. Electrochemical and Solid State Letters 12, A215-A218 (2009).
[64] N. Ding, J. Xu, Y. X. Yao, G. Wegner, I. Lieberwirth, C. H. Chen, Improvement of cyclability of Si as anode for Li-ion batteries. Journal of Power Sources 192, 644-651 (2009).
[65] S. Komaba, N. Yabuuchi, T. Ozeki, Z. J. Han, K. Shimomura, H. Yui, Y. Katayama, T. Miura, Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C 116, 1380-1389 (2012).
[66] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode. Journal of the Electrochemical Society 151, A1659-A1669 (2004).
[67] D. P. Abraham, M. M. Furczon, S. H. Kang, D. W. Dees, A. N. Jansen, Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. Journal of Power Sources 180, 612-620 (2008).
[68] Y. C. Yen, S. C. Chao, H. C. Wu, N. L. Wu, Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells. Journal of the Electrochemical Society 156, A95-A102 (2009).
[69] L. B. Chen, K. Wang, X. H. Xie, J. Y. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources 174, 538-543 (2007).
[70] N. S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, S. S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources 161, 1254-1259 (2006).
[71] I. A. Profatilova, N. S. Choi, K. H. Yew, W. U. Choi, The effect of ethylene carbonate on the cycling performance of a Si electrode. Solid State Ionics 179, 2399-2405 (2008).
[72] M. Q. Li, M. Z. Qu, X. Y. He, Z. L. Yu, Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries. Electrochimica Acta 54, 4506-4513 (2009).
[73] S. W. Song, S. W. Baek, Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries. Electrochemical and Solid State Letters 12, A23-A27 (2009).
[74] Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem SolidState Lett 6:A194–A197
[75] Maranchi JP, Hepp AF, Evans AG, Nuhfer NT, Kumta PN (2006) Interfacial properties of the a-Si/Cu:active–inactive thin-film anode system for lithium-ion batteries. J Electrochem Soc 153:A1246–A1253
[76] Maranchi JP, Hepp AF, Kumta PN (2003) High capacity reversible silicon thin film anodes lithium ion batteries. Electrochem Solid-State Lett 6:A198–A201
[77] Yonezu I, Tarui H, Yoshimura S, Fujitani S, Nohma T (2004) Abstracts of the 12th International Meeting on Lithium Batteries, vol 58. Electrochemical Society, Nara, Japan, 2004
[78] Chan CK et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35
[79] Yu DP et al (2001) Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Physica E 9:305–309
[80] Chang JB et al (2006) Ultrafast growth of single-crystalline Si nanowires. Mater Lett 60:2125–2128
[81] Wang W, Kumta PN (2010) Nanostructured hybrid silicon/ carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4:2233–2241
[82] Kim H, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed 47:10151–10154
[83] Zheng Y, Yang J, Wang JL, NuLi YN (2007) Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim Acta 52:5863–5867
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw