進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201618115600
論文名稱(中文) 熵驅動之小分子嵌入與複合液晶相的成長
論文名稱(英文) Entropy-driven intercalation of guest molecules and growth of composite liquid crystalline phase
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 楊焙凱
研究生(英文) Bei-Kai Yang
學號 N56034041
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-阮至正
口試委員-蘇安仲
口試委員-鄭有舜
口試委員-童世煌
中文關鍵字 PBTT  嵌入  複合液晶相 
英文關鍵字 PBTTT  intercalation  composite liquid crystals 
學科別分類
中文摘要 本研究探討導電液高分子poly( 2,5-bis ( 3-alkylthiophen-2-yl ) thieno[3,2-b] thiophene ) (PBTTT)和六甲基苯 (Hexamethylbenzene)間的混摻行為。由X-ray 繞射分析,發現PBTTT晶相可以做為Host,使guest分子六甲基苯嵌入至其ac面中。

嵌入六甲基苯後,PBTTT結晶轉變液晶溫度往低溫位移,故晶相穩定度下降。同時轉變為液晶相後,六甲基苯可以連續的進入PBTTT液晶相的ac面中,直到將空孔填滿,隨後熔化。而降溫時六甲基苯也可以陸續的離開。另外六甲基苯嵌入的數目,是由當時平衡溫度時的熱力學所決定的。這與一般主客複合相的形成觀點是截然不同的。由此,我們以焓(enthalpy)與熵(entropy)的變化,比較常見文獻與我們的研究的差異性。

最後,PBTTT可以利用六甲基苯方向性的結晶,以及兩者間的晶格匹配。於液晶相進行持溫,以增加分子的流動性,而進行磊晶。發現PBTTT可以形成大範圍特定方向的有序排列。
英文摘要 Conventionally the intercalation of guest molecules into host crystals is an enthalpy-driven exothermic process, which is viewed as an approach of crystal engineering and provides a way to create novel composite crystals for potential uses. Nevertheless, for the intercalation of hexamethylbenzene (HMB) into the liquid crystalline (LC) phase of semiconductive hair-rod conjugated polymers poly[2,5-bis(3-alkylthiophen-2-yl)thieno (3,2-b)thiophene] (PBTTT), a reversible process driven by the gain of system entropy has been unveiled. With the spread of PBTTT LC phase in between the stacking of HMB crystalline platelets, HMB molecules were found to leave from original crystalline lattices and migrate into the unoccupied space of PBTTT LC phase (Figure 1). This intercalation process involves the loss of lattice energy and the entropy gain by greater liberty and thermal motions of HMB molecules within LC phase of PBTTT. With the increase of temperature, step-wise increase of stacking periodicity of conjugate backbones was identified as a result of sequential intercalation of HMB molecules.
The migration of HMB molecules from solid-state crystals to the liquid crystals of PBTTT can be viewed as a new type of sublimation process, and nevertheless, this migration process is thermally reversible. Upon heating, HMB molecules are sequentially incorporated within the LC phase of PBTTT. During the cooling process, intercalated HMB molecules return and rejoin the crystalline packing. Within the LC stacking structure, the number of intercalated HMB molecules is fixed at each temperature as a saturated thermodynamic state, which is also critically influenced by the required volume of thermal motions of side chains. Thus the conventional definition of vacancy site in crystalline lattices should be further reviewed for describing the dynamic intercalation of guest molecules within LC phases, and the concept of composite LC phase is proposed.
論文目次 摘要..................................................I
目錄..................................................i
圖目錄................................................iii
第一章 緒論..........................................1
1-1 前言與研究動機.................................1
第二章 文獻回顧......................................3
2-1 PBTTT 的結晶結構..............................3
2-2 PBTTT的相變化性質.............................4
2-2-1 液晶相.......................................4
2-3 側鏈對結晶的影響..............................7
2-3-1 P3AT側鏈對結晶的影響..........................7
2-3-2 PBTTT側鏈對結晶的影響.........................9
2-4 分子嵌入結晶.................................12
2-4-1 Host-guest複合物(Host-guest composite)......12
2-4-2 小分子嵌入小分子結晶..........................12
2-4-3 小分子嵌入高分子結晶..........................15
2-4-4 小分子嵌入PBTTT結晶..........................17
第三章 實驗材料與方法...............................24
3-1 實驗材料....................................24
3-2 實驗分析儀器.................................26
3-3 實驗流程....................................30
3-4 實驗步驟....................................31
第四章 結果與討論..................................33
4-1 六甲基苯晶板和PBTTT相的堆疊...................33
4-1-1 PBTTT-C14與六甲基苯的均質混合................33
4-1-2 六甲基苯結晶相與PBTTT間的堆疊.................35
4-1-3 六甲基苯晶相分子混摻PBTTT對熱膨脹性的影響......36
4-2 六甲基苯分子嵌入PBTTT液晶相...................39
4-2-1 六甲基苯分子的階段性嵌入......................39
4-2-2 熱力學平衡的d(100)間距.......................41
4-2-3 六甲基苯嵌入PBTTT液晶相的數目.................43
4-2-4 六甲基苯嵌入對PBTTT骨幹的影響.................46
4-2-5 六甲基苯連續嵌入的過程........................48
4-3 側鏈長度的效應...............................50
4-3-1 六甲基苯嵌入PBTTT-C16的過程..................50
4-3-2 混摻六甲基苯對不同側鏈長度PBTTT液晶溫度的影響..53
4-3-3 嵌入不同側鏈分子的結晶相與熱膨脹性間的影響.....56
4-3-4 Guest分子的可逆嵌入與不同側鏈分子於液晶相的熱膨脹變化 ..................................................57
4-4 嵌入的機制.................................59
4-4-1 傳統guest分子嵌入host晶相的機制..............59
4-4-2 加熱過程使六甲基苯嵌入PBTTT的機制............61
4-5 PBTTT-C14與六甲基苯的磊晶關係...............64
第五章 結論......................................74
第六章 參考文獻...................................76
參考文獻 [1] H. Yang, S. W. LeFevre, C. Y. Ryu, Z. Bao Appl. Phys. Lett. 2007, 90, 172116.
[2] M. Brinkmann J. Polym. Sci. Pt. B-Polym. Phys. 2011, 49, 1218.
[3] J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen,T. I. Sölling, M. Giles, I. McCulloch, H. Sirringhaus Chem. Mater. 2004, 16, 4772.
[4] Y. H. Lee, W. C. Yen, W. F. Su, C. A. Dai Soft Matter 2011, 7, 10429.
[5] J. Liu, M. Arif, J. Zou, S. I. Khondaker, L. Zhai Macromolecules 2009, 42, 9390.
[6] T. S. Shabi, S. Grigorian, M. Brinkmann, U. Pietsch, N. Koenen, N. Kayunkid, U. Scherf J. Appl. Polym. Sci. 2012, 125, 2335.
[7] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fre´chet, M. F. Toney Macromolecules 2005, 38, 3312.
[8] B. K. Sarker, J. Liu, L. Zhai, S. I. Khondaker ACS Appl. Mater. Interfaces 2011, 3, 1180.
[9] I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, M. F. Toney Nat. Mater. 2006, 5, 328.
[10] M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch, M. Heeney J. Am. Chem. Soc. 2007, 129, 3226.
[11] E. Cho, C. Risko, D. Kim, R. Gysel, N. C. Miller, D. W. Breiby, M. D. McGehee, M. F. Toney, R. J. Kline, J. L. Bredas J. Am. Chem. Soc. 2012, 134, 6177.
[12] B. H. Hamadani, D. J. Gundlach, I. McCulloch, M. Heeney Appl. Phys. Lett.2007, 91, 243512.
[13] T. Umeda, D. Kumaki, S. Tokito Appl. Phys. Lett. 2009, 105, 024516.
[14] W. C. Cheng, C. Y. Yang, B. Y. Kang, M. Y. Kuob, J. Ruan Soft Matter 2013, 9, 10822.
[15] 黃耀賢, 二成分混合溶劑之溶劑效應對聚三己基噻吩的型態、聚集與結晶之探討, 碩士論文, 2013.
[16] D. M. DeLongchamp, R. J. Kline, Y. Jung, E. K. Lin, D. A. Fischer, D. J. Gundlach, S. K. Cotts, A. J. Moad, L. J. Richter, M. F. Toney, M. Heeney, I. McCulloch Macromolecules 2008, 41, 5709.
[17] R. A. MacPhail, H. L. Straws, R. G. Snyder J. Phys. Chem. 1984, 88, 334-341.
[18] M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, L. J. Richter Langmuir 2007, 23, 834.
[19] Z. Bao, A. J. Lovinger Chem. Mater. 1999, 11, 2607.
[20] B.M.W. Langeveld-Voss, R.A.J. Janssen, E.W. Meijer J. Mol. Struct. 2000, 521, 285.
[21] A. Gadisa, W. D. Oosterbaan, K. Vandewal, J. C. Bolse´e, S. Bertho, J. D’Haen, L. Lutsen, D. Vanderzande, J. V. Manca Adv. Funct. Mater. 2009, 19, 3300.
[22] A. Tamanai, S. Beck, A. Pucci Displays 2013, 34, 399.
[23] M. Y. Chang, Y. H. Huang, Y. K. Han Org. Electron. 2014, 15, 251.
[24] R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney, I. McCulloch Macromolecules 2007, 40, 7960.
[25] M. Arslan, M. A. Tasdelen, T. Uyar, Y. Yagci Eur. Polym. J. 2015, 71, 259.
[26] X. Li, M. Xu, K. Zhang, D. Xie, X. Cao IEEE Trns. Dielectr. Electr. Insul. 2014, 21, 1705.
[27] P. Winberg, M. Eldrup, N. J. Pedersen, M. A. van Es, F. H.J. Maurer Polymer 2005, 46, 8239.
[28] S. Chirachanchai, N. Chiravanichanun, M. Miyata Int. J. Polym. Anal. Charact. 2003, 8, 417.
[29] R. Schollhorn Chem. Mater. 1996, 8, 1747.
[30] S. Kitagawa, R. Kitaura, S. I. Noro Angew. Chem. Int. Ed. 2004, 43, 2334.
[31] J. H. Ryu, H. J. Kim, Z. Huang, E. Lee, M. Lee Angew. Chem. Int. Ed. 2006, 45, 5304.
[32] M. Miyata, M. Shibakami, S. Chirachanchai, K. Takemoto, N. Kasai, K. Miki Nature 1990, 343, 446.
[33] K. Nakano, K. Sada, K. Nakagawa, K. Aburaya, N. Yoswathananont, N. Tohnai, M. Miyata Chem. Eur. J. 2005, 11, 1725.
[34] C. D. Rosa, P. Rizzo, O. R. de Ballesteros, V. Petraccone, G. Guerra Polymer 1999, 40, 2103.
[35] O. Tarallo, V. Petraccone, C. Daniel, G. Guerra Crystengcomm 2009, 11, 2381.
[36] O. Tarallo, V. Petraccone Macromolecules 2010, 43, 8549.
[37] V. Petraccone, O. Tarallo, V. Venditto, G. Guerra Macromolecules 2005, 38, 6965.
[38] O. Tarallo, M. M. Schiavone, V. Petraccone Macromolecules 2010, 43, 1455.
[39] V. Petraccone, O. Tarallo, V. Califano Macromolecules 2003, 36, 685.
[40] O. Tarallo, A. Buono, V. Califano, V. Petraccone Macromol. Symp. 2003, 203, 123.
[41] H. Marubayashi, S. Asai, M. Sumita Macromolecules 2012, 45, 1384.
[42] Y. Uda, F. Kaneko, N. Tanigaki, T. Kawaguchi Adv. Mater. 2005, 17, 1846.
[43] X. He, B. A. Collins, B. Watts, H. Ade , C. R. McNeill Small 2012, 8, 1920.
[44] N. C. Miller, E. Cho, M. J. N. Junk, R. Gysel, C. Risko, D. Kim, S. Sweetnam, C. E. Miller, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, A. Amassian, D. Acevedo-Feliz, C. Knox, M. R. Hansen, D. Dudenko, B. F. Chmelka, M. F. Toney, J. L. Brédas, M. D. McGehee Adv. Mater. 2012, 24, 6071.
[45] N. C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, C. E. Miller, S. Sweetnam, A. Sellinger, M. Heeney, I. McCulloch, J. L. Brédas, M. F. Toney, M. D. McGehee Adv. Energy Mater. 2012, 2, 1208.
[46] N. C. Miller, R. Gysel, C. E. Miller, E. Verploegen, Z. Beiley, M. Heeney, I. McCulloch, Z. Bao, M. F. Toney, M. D. McGehee J. Polym. Sci. Pt. B-Polym. Phys. 2011, 49, 499.
[47] L. Zhang, F. Liu, Y. Diao, H. S. Marsh, N. S. Colella, A. Jayaraman,
T. P. Russell, S. C. B. Mannsfeld, A. L. Briseno J. Am. Chem. Soc. 2014, 136, 18120.
[48] M. J. Lee, D. Gupta, N. Zhao, M. Heeney, I. McCulloch, H. Sirringhaus Adv. Funct. Mater. 2011, 21, 932.
[49] L. Biniek, N. Leclerc, T. Heiser, R. Bechara, M. Brinkmann Macromolecules 2013, 46, 4014.
[50] T. Higashi, N. Yamasaki, H. Utsumi, H. Yoshida, A. Fujii, M. Ozaki Jpn. J. Appl. Phys. 2012, 51, 02BK11.
[51] Q. Sun, K. Park, L. Dai J. Phys. Chem. C 2009, 113, 7892.
[52] H. Wang, J. Liu, Y. Han Polymer 2013, 54, 948.
[53] Y. Reynier, R. Yazami, B. Fultz J. Power Sources 2003,119–121, 850.
[54] A. M. Lazarin, C. Airoldi Thermochim. Acta 2007, 454, 43.
[55] L. M. Nunes, C. Airoldi Thermochim. Acta 2005, 435, 118.
[56] A. M. Lazarin, C. Airoldi Thermochim. Acta 2005, 437, 114.
[57] H. P. Hopkins, W. D. Wilson Biopolymers 1987, 26, 1347.
[58] L. O. Brockway, J. M. J. Robertson Chem. Soc. Part II 1939, 1324.
[59] K. Lonsdale Proc. Roy. SOC. A 1929, 123, 494.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw