進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201616373000
論文名稱(中文) 高分子駐極體於有機場效電晶體型記憶體元件之研究
論文名稱(英文) The study of organic field-effect transistor based memory devices with polymeric electrets
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 王裕夫
研究生(英文) Yu-Fu Wang
學號 l78001177
學位類別 博士
語文別 英文
論文頁數 123頁
口試委員 指導教授-周維揚
口試委員-許聯崇
口試委員-鄭弘隆
口試委員-張振鵬
口試委員-胡裕民
口試委員-陳建亨
口試委員-劉世鈞
中文關鍵字 聚醯亞胺  駐極體  有機薄膜電晶體  記憶體元件  光電效應  pn異質結構 
英文關鍵字 polymeric electret  PTCDI-C13H27  organic thin-film transistor  memory  memory device  pn heterojunction 
學科別分類
中文摘要 本論文主要可以分為三個部分,第一個部分為利用新穎的聚醯亞胺介電層材料 (polyimide, PI),透過連續的化學反應使其鍵結具有高極性之側鏈官能基團結構(piperazinyl and cholesterol structure),並應用於n型半導體N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27)型的記憶體元件。第二部分是透過摻混不同比例的極性分子於載子捕捉層中,控制載子捕捉層的表面電場位勢與載子捕捉能態分佈,這些極性分子在電場應力誘導下會產生準穩態的電耦場(dipole field),會影響主動層中的自由載子在半導體與載子捕捉層介面的傳輸特性,透過材料物理特性的分析與電晶體元件電流輸出特性分析來建構出載子的傳輸理論模型。第三部分是透過物理氣相沉積的方式,形成pentacene/ PTCDI-C13H27異質結構,利用低略角X光繞射儀(Grazing angle X ray diffraction, GIXRD)分析不同厚度的pentacene材料磊晶於單層PTCDI-C13H27之結晶參數,pentacene/PTCDI-C13H27異質結構所製作的光記憶體元件(photomemory device)其記憶窗口可達47.5V,為n型電晶體式記憶體元件的一大突破,由於異結構可以提供足量的電子與電洞載子,在高速的脈衝電壓操作下,記憶窗口仍可維持30V的水準,提升有機記憶體元件的應用潛力。
本論文第一部份主要利用改質的聚醯亞胺材料,使其具有駐極體的特性(PIB),並製作於n型電晶體式的記憶體元件,透過靜電力顯微鏡的分析可以觀察出PI薄膜表面的電勢分佈情況,相較於一般傳統的PI (PIA),PIB薄膜表面的相位分佈產生劇烈的波動,這是由於極性側鏈官能基團在電場應力下會誘導產生局部的耦極場,改變表面的位勢能態,這些耦極場可以吸引通道中的自由載子被駐極體捕獲,也可以誘導更多通道中的自由載子累積於半導體與駐極體的界面,使電晶體元件的場效載子遷移率提升了3倍,利用PIA所製作的記憶體元件幾乎不具備記憶效應,而PIB元件的臨界電壓則在記憶體元件的操作後產生明顯的偏移,可以證實這些具有極性能的側鏈官能基團可以有效的補獲通道中的載子,產生臨界電壓的偏移而形成記憶效應,記憶體元件也具有一定的維持能力,在經過1000秒後仍能保有三個量級的電流比(on/off current ratio),因為電場誘導的耦極場可以經由施加電訊號的頻率變化產生不同的轉向(orientation) ,當記憶體的作時間降低至0.2 ms時仍能保有3V左右的記憶窗口。
本論文的第二部份是將PCPI駐極體(註:論文第一部分中的PIB材料)依不同的重量百分濃度摻混於PIA材料中,目的是為了調控載子於半導體/駐極體間的捕捉與釋放行為,經由示熱差掃瞄分析儀 (DSC analyze)顯示,隨著PCPI在薄膜中的密度增加,材料的玻璃轉換溫度(glass transition temperature)會大幅的得到增益,這是由於極性側鏈基團間具有分子間作用力,使得材料於相態轉換時的所需溫度提高,材料的熱性質因此得到提升。透過物理特性分析可以發現,半導體分子在駐極體材料上堆疊的行為並不會受到太大的影響,在電晶體元件中,飽和輸出電流也會隨著摻混濃度的提升而得到增益,這是因為在閘極電場應力的誘導下,極性的側鏈基團會被誘導產生耦極場在半導體與駐極體之界面,增益了界面間的等效電場,使更多在半導體層中的載子被誘導遷移至半導體與駐極體界面被累積,通道的電導度增加使得場效載子遷移率獲得提升。一般來說,大部分的有機電晶體元件的飽和輸出電流在長時間的電場應力下會產生衰退的現象 (bias stress effect),使元件產生不穩定的輸出電流,影響其應用的潛力,本研究中利用PCPI駐極體所製作的電晶體元件於長時間操作時,飽和輸出電流反而會產增益的現象,顯示元件具備很高的穩定度,這現象可以被歸咎於兩個因素造成,(一) 電場誘導的耦極場吸引更多載子累積於半導體與駐極體界面,克服載子於界面上的補獲效應(trap effects),讓飽和電流隨著時間而增加,(二) 駐極體表面具有較低的缺陷捕獲態(trap states)以及生命週期較短(trap constant time)。在光記憶體元件的應用中,當PCPI材料的分子密度增加時記憶窗口反而微幅的下降,這是因為載子補獲態整體的生命週期隨著PCPI密度提升而增加,使得被捕獲於深層缺陷態(deep trap state)的載子無法有效的被釋放回通道。透過新穎PI材料的開發,我們成功改善有機電晶體元件的電性穩定度,並同時提升場效載子遷移率與記憶窗口的特性表現。
本論文的第三部分是透過製作pentacene/ PTCDI-C13H27異質結構來改善n型電晶體式記憶體元件中少數載子濃度較低之問題,其中本團隊為第一個提出monolayer PTCDI-C13H27/pentacene/PTCDI-C13H27複合型的異質結構並將其應用於光記憶體元件中,由於pentacene和PTCDI-C13H27材料的表面能差異較大,因此pentacene成長於monolayer PTCDI-C13H27上時並非類似傳統layer-by-layer的磊晶模型,而是頃向三維結構的磊晶方式形成分散式的島狀結晶,這種結構可以降低注入載子被複合的機率,使電子和電洞載子可以有效的在異質界面與半導體/駐極體界面上有效的傳輸,同時提升主動層中電洞載子的濃度,讓記憶體元件於清除操作時有足量的電洞被提供,因為異質結構具備大量的pn junction界面,對於在半導體層中光生激子的解離效率(dissociation)能獲得有效的助益,透過光記憶體元件的製作其記憶窗口可達47.5 V,由於主動層中具有足量的電子與電洞載子,當記憶體元件的操作頻率提升時(500 Hz),仍能維持大於30V的記憶窗口,此一特性優於過去所發表過的文獻,此外當pentacene厚度增加至5 nm以上時,雙載子傳輸的特性被發現於轉換曲線中,對於過去文獻中,以駢苯衍生物為主動層材料的電晶體元件,雙載子傳輸行為還沒有被發現過,為本研究的一大亮點。
英文摘要 In the past years, organic field-effect transistor (OFET) based memory devices have attracted many attentions in organic electronics, because of their unique advantages, such as easily packed with integrated circuits, low-temperature manufacturing, and non-destructive reading out of digital signals. In OFETs, pentacene is usually used as a standard organic semiconductor for being an active layer in p-type device, owing to its superior hole transport property between molecules. However, the researches of n-type OFET device was relatively backward comparing with p-type device. This may attribute to the difficult synthesis and unstable structures under atmosphere environment for n-type semiconductors, which restricts the electron transport ability of OFETs. Therefore, the researches for n-type semiconductor-based OFET memory device are still scarcity. On the other hand, the interfacial property between semiconductor layer and gate dielectric layer plays an important role for developing high performance OFET memories. In this thesis, we propose some simple routes to improving both electrical characteristics and electrical memory windows of n-type OFET memories. A novel polyimide (PI) electret with a quasi-permanent electrostatic dipole on side chain structures was synthesized in this study. We demonstrate that the carriers can be trapped by the polar groups near the semiconductor/PI interface, and the electrical properties and memory effects of memory device were successfully controlled by the mixing ratios of PI electret. Finally, we also propose an easy method to improve the memory window and operation speed of n-type OFET-based photomemory devices by constructing a discontinuous pn-heterojnuction structure within the active layer that can effectively enhance charge carrier transportation at interfaces to broaden the memory window of memory devices.
In the first part, a molecular design for the electret material of n-operating organic field-effect transistor-based (OFET) memories is introduced. A large memory window and high operating speed were achieved while the polar groups are connected to the polymer chain of polyimide, which plays the role of electret of a transistor memory device. In fact, the significant memory effect in the device with PI electret can be ascribed to the charge carriers that were rapidly trapped and released by the polar groups of PI electret. The phase variation of electrical force microscopy (EFM) images showed that polarization field induces charge trapping states on the surface of electret layer and accumulates charged carriers within the conducting channel of OFET to achieve high-performance memory and transistor simultaneously. In conclusion, an extra-large memory window was also obtained by introducing photo-induced charge transfer effect.
In the second part, a series of polyimides (PIs) containing different weight ratios of polar piperazinyl and cholesterol side chains, denoted as PCPI, was synthesized in this study. These PIs were used as gate dielectrics of n-type organic field-effect transistors (OFETs) and as electrets of photo-assisted organic memories. The thermal properties of the PI/PCPI composite films were improved by increasing the spatial distribution of the PCPI molecules to form a thermally stable dielectric film. The performances of OFETs, as PIs were used as gate dielectrics, were gradually enhanced by increasing the mixture ratios of the PCPI molecules. A dipole field, which originated from the PCPI molecules into the OFETs, was introduced to observe the special phenomenon of output current growth under a long operation time. The application of these superior transistors with PCPI- and PI-mixed electrets to the field of organic memory resulted in a photo-assisted memory window of more than 38 V. The mechanisms of the carriers trapped in and released from the PI electrets were elucidated. Results showed that our devices possess excellent stability for OFETs and an extra-large memory window for organic memory devices.
In the third part, a discontinuous pentacene layer was formed on the PI/PTCDI interface by controlling the parameters of thermal evaporation process. The thicknesses of pentacene layers were varied from 0 nm (serve as standard device) to 10 nm. The transmission electron microscopy (TEM) images show that the dispersion of the island type pentacene crystals on n-type PTCDI-C13H27 monolayer, which confirms that the three dimension growth of pentacene molecules instead of the traditional layer-by-layer growth mechanism. Interesting crystalline properties of pentacene films in in-plane and out of-plane directions were obtained by grazing angle x-ray diffraction (GIXRD) measurements. The GIXRD results demonstrate that the pentacene crystals are trending to three dimension growth on PTCDI-C13H27 monolayer below 5 nm thickness, and then transfer to layer-by-layer growth model when the thickness of pentacene layer is above 5 nm. This discontinuous pn-heterojunction structure can reduce the chances of charge recombination of injected electrons in top contact geometry OFETs. As this structure was applied in an organic memory device, the electrical memory window of the device with 5 nm-thick pentacene layer was gradually extended to 47.6 V, which is larger than the past reports for n-type memory device. This result demonstrates that the inserted pn-heterojunction structure possesses more effective interface to lead the photo-induce charges dissociation into conducting channel and increase the density of minority carriers to extend the negative shift of VT. Moreover, as the operation time of programing and erasing process was reduces to 0.2 ms, the electrical memory window is still maintain at 32.6 V, which realizes the high performance and high-speed operation n-type photomemory device.
論文目次 Abstract..........I
中文摘要...........IV
誌謝..............VIII
Contents.........X
Index of Tables..XIII
Index of Figures.XV

Chapter 1 Introduction..........1
1.1 Introduction..........1
1.1.1 History of organic materials and semiconductors .......1
1.2 Research motivation..........3
1.3 Working principle of OFET and memory device..........7
1.3.1 Organic material-based field-effect transistor..........7
1.3.2 OFET-based memory devices..........9
1.4 Thesis structure..........11
1.5 References..........19
Chapter 2 High-response organic thin-film memory transistors based on dipole-functional polymer electret layers..........23
2.1 Introduction..........23
2.2 Experimental methods..........25
2.3 Results and discussion..........26
2.4 Conclusion..........33
2.5 References..........46
Chapter 3 Controlling carriers trapping and relaxation with a dipole field in an organic field-effect device..........48
3.1 Introduction..........48
3.2 Experimental procedures..........51
3.2.1 Material Synthesis..........51
3.2.2 Preparation of Devices..........52
3.3 Results and discussion..........53
3.3.1 Molecular weights..........53
3.3.2 Thermal properties of synthesized polymers..........54
3.3.3 Structural analysis..........56
3.3.4 Surface morphology properties..........57
3.3.5 EFM imaging..........58
3.3.6 Electrical properties..........59
3.3.7 Charge transport properties..........63
3.3.8 Organic memory devices..........64
3.4 Conclusions..........68
3.5 References..........89


Chapter 4 Interface engineering for improving the photoelectric effects and operation speeds of organic memory transistors..........93
4.1 Introduction..........93
4.2 Results and Discussion..........95
4.2.1 GIXRD patterns of semiconductor films..........95
4.2.2 OFET-based photomemory device..........97
4.2.3 Electrical characteristics of OFET-based photomemory devices..........99
4.3 Summary..........101
4.4 References..........114
Chapter5 Conclusion and Outlook..........116
Appendix..........119
A. List of abbreviations..........119
B. List of symbols..........120
List of publications..........122
參考文獻 Chapter 1
[1] J. E. Greene, Appl. Phys. Rev, 2015, 2, 011101.
[2] W. Zeng , L. Shu , Q. Li , S. Chen , F. Wang ,X. M. Tao, Adv. Mater.,2014, 26, 5310-5336.
[3] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[4] D. F. Babbe, C. R. Westgate, J. Phys. Chem. Solids, 1970, 31, 2679-2687.
[5] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, A. J. Heeger, Phys. Rev. Lett., 1977, 39, 17.
[6]H. Koezuka, A. Tsumura and T. Ando, Syn. Metals, 1987,18 ,699-704.
[7] H. KoezukA, A. Tsumura, Syn. Metals, 1989, 28, 753-760.
[8] G. Horowitz, Adv. Mater., 1998, 10, 365.
[9] L. Dou , J. You , Z. Hong , Z. Xu , G. Li ,R. A. Street ,Y. Yang, Adv. Mater., 2013, 25, 6642–6671.
[10] J. Veres, S. Ogier, G. Lloyd, Chem. Mater., 2004, 16, 4543-4555.
[11] H. Dong ,X. Fu , J. Liu , Z. Wang , W. Hu, Adv. Mater.,2013, 25, 6158-6183.
[12] S. Gu¨nes,He. Neugebauer,N. S. Sariciftci, Chem. Rev., 2007, 107, 1324-1338.
[13] G. Gelinck , P. Heremans , K. Nomoto ,T. D. Anthopoulos, Adv. Mater.,2010, 22, 3778–3798.
[14] A. Kalita,S. Hussain,A. H. Malik,N. V. V. Subbaraoa, P. K. Iyer, J. Mater. Chem. C, 2015, 3, 10767-10774.
[15] J. Kim , M. S. Lee , S. Jeon , M. Kim , S. Kim , K. Kim ,F. Bien , S. Y. Hong , J.U. Park, Adv. Mater., 2015, 27, 3292-3297.
[16] S. Kim , J. H. Son , S. H. Lee , B. K. You , K.I. Park ,H. K. Lee , M. Byun ,K. Jae Lee, Adv. Mater., 2014, 26, 7480-7487.
[17] A. Petritz ,A. Wolfberger , A. Fian , T.Griesser,M. I.Vladu ,B. Stadlober, Adv. Mater. , 2015, 1-12.
[18] F. Torricelli, M. Ghittorelli, E. C. P. Smits , C. W. S. Roelofs,R. A. J. Janssen , G. H. Gelinck , Z. M. Kovács-Vajna,E. Cantatore, Adv. Mater. ,2016, 28, 284–290
[19] J. Noh, S. Kim, K. Jung, J. Kim, S. Cho,G. Cho, IEEE Electron Devices, Lett., 2011, 32, 11.
[20] P. Mei, T. N. Ng, R. A. Lujan, D. E. Schwartz, S. Kor, B. S. Krusor,J. Veres, Appl. Phys. Lett., 2014, 105, 123301 (2014)
[21] J. Lee, H.F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson, S. R. Forrest, Nat. Mater., 2016, 15, 92-99.
[22] J.A. Avila-Ni~no,E.R. Patchett, D.M. Taylor, H.E. Assender, S.G. Yeates, Z. Ding,J.J. Morrison, Org.Electron, 2016, 77-81.
[23] K.J. Baeg, M. Caironi,Y.Y. Noh, Adv. Mater., 2013, 25, 4210-4244.
[24] Y. Aleeva, B. Pignataro, J. Mater. Chem. C, 2014, 2, 6436.
[25] S.T. Han, Y. Zhou, Z.X. Xu, L.B. Huang, X.B. Yang,V. A. L. Roy, Adv. Mater., 2012, 24, 3556-3561.
[26] P. Heremans,G. H. Gelinck,R. Muller,K.J. Baeg,D.Y. Kim,Y.Y. Noh, Chem. Mater., 2011, 23, 341-358.
[27] O. Acton, G. Ting, H. Ma, J. W. Ka, H.L. Yip, N. M. Tucker,A.K.Y. Jen, Adv. Mater., 2008, 20, 3697-3701.
[28] H. Yu, Z. Bao, J. Hak Oh, Adv. Funct. Mater., 2013, 23, 629-639.
[29] J. Puigdollers, M. D. Pirriera, A. Marsal, A. Orpella, S. Cheylan, C. Voz, R. Alcubilla, Thin Solid Films, 2009, 517, 6271-6274.
[30] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva, J. L. Bredas, L. L. Miller, K. R. Mann, C. D. Frisbie, J Phys Chem B, 2004, 108, 19281.
[31] S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, Appl Phys Lett, 2006, 89, 112108.
[32] J. Soeda, T. Uemura, Y. Mizuno, A. Nakao, Y. Nakazawa, A. Facchetti, J. Takeya, Adv Mater, 2011, 23, 3681.
[33] Z. Liang, Q. Tang, J. Xu, Q. Miao, Adv Mater, 2011, 23, 1535.
[34] M. M. Islam, S. Pola, Y.-T. Tao, Chem Commun, 2011, 47, 6356.
[35] H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao, J Am Chem Soc, 2012, 134, 2760.
[36] C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, S. Patil, J Am Chem Soc, 2012, 134, 16532.
[37] A. Lv, S. R. Puniredd, J. Zhang, Z. Li, H. Zhu, W. Jiang, H. Dong, Y. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W. Hu, Z. Wang, Adv Mater, 2012, 24, 2626.
[38] T. He, M. Stolte, F. Wuerthner, Adv Mater, 2013, 25, 6951.
[39] J. H. Park, E. H. Jung, J. W. Jung, W. H. Jo, Adv Mater, 2013, 25, 2583.
[40] F. Zhang, Y. Hu, T. Schuettfort, C.-a. Di, X. Gao, C. R. McNeill, L. Thomsen, S. C. B. Mannsfeld, W. Yuan, H. Sirringhaus, D. Zhu, J Am Chem Soc, 2013, 135, 2338.
[41] T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, J. Pei, J Am Chem Soc, 2013, 135, 12168.
[42] L. Danqing, X. Xiaomin, S. Yaorong, H. Zikai, X. Jianbin, M. Qian, Angew. Chem. Int. Ed., 2013, 52, 6222.
[43] R. Ahmed, C. Simbrunner, G. Schwabegger, M.A. Baig, H. Sitter, Organic Electronics, 2014, 15, 3203.
[44] Y.C. Chiu, H.S. Sun, W.Y. Lee, S. Halila, R. Borsali, W.C. Chen, Adv Mater., 2015, 27, 6527.
[45] U. Zschieschang, K. Amsharov, M. Jansen, K. Kern, H. Klauk, R.T. Weitz, Organic Electronics, 2015, 26, 340.
[46] N.M. Murari, Y.J. Hwang, F.S. Kim, S.A. Jenekhe, Organic Electronics, 2016, 31, 140.
[47] A. Dadvand, J. Lu, C. Py, T.Y. Chu, R. Movileanu, Y. Tao, Organic Electronics, 2016, 30, 213.
[48] W.P. Lin, S.J. Liu, T. Gong, Q. Zhao,W. Huang, Adv. Mater., 2014, 26, 570-606.
[49] S.T. Han, Y. Zhou,V. A. L. Roy, Adv. Mater., 2013, 25, 5425-5449.
[50] B.D. Boer,A. Hadipour, M. M. Mandoc,T.v. Woudenbergh, P. W. M. Blom, Adv. Mater., 2005, 17, 5.
[51] H. Yang,S. H. Kim, L. Yang, S. Y. Yang,C. E. Park, Adv. Mater., 2007, 19, 2868-2872.
[52] J. Zaumseil, H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
[53] Yu. Guo, C. Di, S.Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu,Y. Liu, Adv. Mater., 2009, 21, 1954-1959.
[54] A. Nakajima, D. Fujii, Appl. Phys. Lett., 106, 2015,103302.
[55] B. Hu, C. Wang, J. Zhang, K. Qian, P. Gu, Z. Wang, L.Xu, W. Chen,P. S. Lee, Q. Zhang, RSC Adv., 2015, 5,30542-30548.
[56] R.C.G Naber, C. Tanase, P.W.M. Blom, G.H.Gelinck,A.W. Marsman, F.J.Touwslager, S. Setayesh, D.M.E. Leeuw, Nat. Mat., 2005, 4, 243.
[57] L. Liao,H. J. Fan, B. Yan, Z. Zhang,L. L. Chen,B. S. Li, G. Z. Xing, Z. X. Shen, T. Wu, X. W. Sun,J. Wang,§ T. Yu, ACS nano., 2000, 3, 3.
[58] K.J. Baeg, Y.Y. Noh,J. Ghim, B. Lim,D.Y. Kim, Adv. Funct. Mater., 2008, 18, 3678-3685.
[59] K.J. Baeg, Y.Y. Noh, J. Ghim, S.J. Kang, H. Lee,D.Y. Kim, Adv. Mater., 2006, 18, 3179-3183.
[60] Y. H. Chou, H. C. Chang, C. L. Liu,W. C. Chen, Polym. Chem., Polym. Chem., 2015, 6, 341-352.

Chapter 2
[1] K. J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc., 135 (2013) 6724-6746.
[2] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, T. W. Lee, Nature Photon., 2012, 6, 105-110.
[3] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street and Y. Yang, Adv. Mater., 2013, 25, 6642-6671.
[4] Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Adv. Mater., 2009, 21, 1954-1959.
[5] C. Kim, J. M. Song, J.S. Lee and M. J. Lee, Nanotechnology, 2014, 25, 014016.
[6] S. T. Han, Y. Zhou and V. A. L. Roy, Adv. Mater., 25 (2013) 5425-5449.
[7] P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim and Y. Y. Noh, Chem. Mater., 2011, 23, 341-358.
[8] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim and D. Y. Kim, Adv. Funct. Mater., 2008, 18 ,3678-3685.
[9] C. W. Chu, J. Ouyang, J. H. Tseng and Y. Yang, Adv. Mater., 2005, 17, 1440-1443.
[10] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh and D. M. De Leeuw, Nature Mat., 2005, 4, 243-248.
[11] O. Acton, G. Ting, H. Ma, J. W. Ka, H. L. Yip, N. M. Tucker and A. K. Y. Jen, Adv. Mater., 2008, 20, 3697-3701.
[12] C. W. Tseng, Y. L. Chen and Y. T. Tao, Org. Electron., 2012, 13, 1436-1442.
[13] T. T. Dao, T. Matsushima, H. Murata, Org. Electron., 2012, 13, 2709-2715.
[14] Th. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer and S. Bauer, Appl. Phys. Lett., 2004, 85, 5409.
[15] Y. H. Chou, H. C. Chang, C. L. Liu and W. C. Chen, Polym. Chem., 2015, 6, 341-352.
[16] G. Gu, M. G. Kane, J. E. Doty and A. H. Firester, Appl. Phys. Lett., 2005, 87, 243512.
[17] C. A. Lee, D. W. Park, S. H. Jin, H. Park, J. D. Lee and B. G. Park, Appl. Phys. Lett. , 2006, 88, 252102.
[18] K. J. Baeg, Y. Y. Noh, H. Sirringhaus and D. Y. Kim, Adv. Funct. Mater., 2010, 20 ,224-230.
[19] Y. S. Lin, B. L. Yeh, M. R. Tsai, H. L. Cheng, S. J. Liu, F. C. Tang and W. Y. Chou, J. Appl. Phys., 2015, 117, 104507.
[20] C. Tanase, E. J. Meijer, P. W. M. Blom and D. M. de Leeuw, Phys. Rev. Lett., 2003, 91, 216601.
[21] R. C. G. Naber, M. Mulder, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Org. Electron., 2006, 7, 132-136.
[22] T. Leijtens, J. Lim, J. Teuscher, T. Park and H. J. Snaith, Adv. Mater., 2013, 25, 3227-3233.
[23] X. Ren and P. K. L. Chan, Appl. Phys. Lett., 2014, 104, 113302.
[24] J. Zhuang, S.T. Han, Y. Zhou and V.A.L. Roy, J. Mater. Chem. C, 3014, 2, 4233-4238.
[25] Y. Jung, R. J. Kline, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch and D. M. DeLongchamp, Adv. Funct. Mater., 2008, 18, 742-750.
[26] S. S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, Appl. Phys. Lett., 2006, 88, 162109.
[27] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim and S. Im, Appl. Phys. Lett., 2008, 92, 013304.
[28] D. K. Hwang, K. Lee, J. H. Kim and S. Im, Appl. Phys. Lett., 2006, 89, 093507.
[29] P. Girard, Nanotechnology, 2001, 12, 485.
[30] H.N. Raval, D.S. Sutar, V.R. Rao , Org. Electron., 2013, 14, 1281-1290.
[31] H.N. Raval, D.S. Sutar, P.R. Nair, V.R. Rao, Org. Electron., 2013, 14, 1467-1476.

Chapter 3
[1] Y. Diao, B. C-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G.Xue, S. C. B. Mannsfeld, Z.Bao, Nature Mater., 2013, 12, 665-671.
[2] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature, 2009, 457, 679-687.
[3] P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater., 2011, 23, 341-358.
[4] M. Egginger, M. I. Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S.Bauer, N. S. Sariciftci, Adv. Mater., 2008, 20, 1018-1022.
[5] Q. D. Ling, D. J. Liaw, E. Y. H. Teo, C. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Polymer, 2007, 48, 5182-5201.
[6] Q. D. Ling , F. C. Chang , Y. Song, C. X. Zhu, D. J. Liaw, D. S. H. Chan, E. T. Kang, K. G. Neoh, J. Am. Chem. Soc., 2006, 128, 8732-8733.
[7] Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Adv. Mater., 2009, 21, 1954-1959.
[8] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, D. Y. Kim, Adv. Mater., 2006, 18, 3179-3183.
[9] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, D. Y. Kim, Adv. Funct. Mater., 2008, 18, 3678-3685.
[10] R. Ahmed, C. Simbrunner, G. Schwabegger, M.A. Baig, H. Sitter, Org. Electron., 2014, 15, 3203-3210.
[11] K. J. Baeg, A. Facchettic, Y. Y. Noh, J. Mater. Chem., 2012, 22, 21138.
[12] Y. H. Chou, N. H. You, T. Kurosawa, W. Y. Lee, T. Higashihara, M. Ueda, W. C. Chen, Macromolecules, 2012, 45, 6946-6956.
[13] Y. H. Chou, Y. C. Chiu, W. Y. Lee, W. C. Chen, Chem. Commun., 2015, 51, 2562.
[14] K. Takagi, T. Nagase, T. Kobayashi, H. Naito, Org. Electron., 2014, 15, 372-377.
[15] H. He, M. Zhong, B. Adzima, D. Luebke, H. Nulwala, K. Matyjaszewski, J. Am. Chem. Soc., 2013, 135, 4227-4230.
[16] D. J. Liaw, P. N. Hsu, W. Hs. Chen, S. L. Lin, Macromolecules, 2002, 35, 4669-4676.
[17] M. A. Meador, Annu. Rev. Mater. Sci., 1998, 28, 599-630.
[18] Y. Chen, J. O. Iroh, Chem. Mater., 1999, 11, 1218-1222.
[19] J. C. Huang, C. B. Hea, Y. Xiao, K. Y. Mya, J. Dai, Y. P. Siow, Polymer, 44, 2003, 4491-4499.
[20] T. L. Li, S. L. C. Hsu, European Polymer Journal, 2007, 43, 3368-3373.
[21] M. M Paradkar, J. Irudayaraj, International Journal of Dairy Technology, 2002, 55, 127-132.
[22]Y. H. Yang, S. H. Kim, L. Yang, S. Y. Yang, C. E. Park, Adv. Mater., 2007, 19, 2868-2872.
[23] K. Shin, S. Y. Yang, C. Yang, H. Jeon, C. E. Park, Org. Electron., 2007, 8, 336-342.
[24] Y. Jung, R. J. Kline, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch, D. M. DeLongchamp, Adv. Funct. Mater., 2008, 18, 742-750.
[25] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Nature Mater., 2004, 3, 317.
[26] P. Girard, Nanotechnology, 2001,12, 485.
[27] H. N. Raval, D. S. Sutar, P. R. Nair, V. R. Rao, Org. Electron., 2013, 14, 1467.
[28] H. N. Raval, D. S. Sutar, V. R. Rao, Org. Electron., 2013,14, 1281.
[29] J. Zaumseil, H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
[30] U. Zschieschang , K. Amsharov , M. Jansen , K. Kern, H. Klauk, R. T. Weitz, Org. Electron., 2015, 26, 340-344.
[31] E. J. Puigdollers, M. D. Pirriera, A. Marsal, A. Orpella, S. Cheylan, C. Voz , R. Alcubilla, Thin Solid Films, 2009, 517, 6271-6274.
[32] E. B. Cho, S. H. Yu, M. Kim, M. H. Lee, W. Huh, J. Lee, J. Kim, J. H. Cho, J. Y. Lee, Y. J. Song, M. S. Kang, J. Phys. Chem. C, 2014, 118, 18146-18152.
[33] E. M. Aghamohammadi, R. Rödel, U. Zschieschang, C. Ocal, H. Boschker, R. T. Weitz, E. Barrena, H. Klauk, ACS Appl. Mater. Interfaces, 2015, 7, 22775-22785.
[34] T. Miyadera, S. D. Wang, T. Minari, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett., 2008, 93, 033304.
[35]D. K. Hwang, C. F. Hernandez, M. Fenoll, M. Yun, J. Park, J. W. Shim, K. A. Knauer, A. Dindar, H. Kim, Y. Kim, Jungbae Kim,H. Cheun, M. M. Payne, S. Graham, S. Im, J. E. Anthony, B. Kippelen, ACS Appl. Mater. Interfaces., 2014, 6, 3378-3386.
[36] U. Zschieschang, K. Amsharov, M. Jansen, K. Kern, H. Klauk, R. T. Weitz, Org. Electron., 2015, 26, 340-344.
[37] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature, 2005, 434, 194-199.
[38] R. P. Ortiz, A.Facchetti, T. J. Marks, Chem. Rev., 2010, 110, 205-239.
[39] H. L. Cheng, J. W. Lin, J. Ruan, C. H. Lin, F. C. Wu, W. Y. Chou, C. H. Chen, C. K. Chang, H. S. Sheu, ACS Appl. Mater. Interfaces, 2015, 7, 16486-16494.
[40] B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel, V. Podzorov, Phys. Rev. B, 2010, 82, 085302.
[41] E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, A. Bonfiglio, Org. Electron., 2011, 12, 477-485.
[42] C. Liu, Y. Xu, Y. Li, W. Scheideler, T. Minari, J. Phys. Chem. C, 2013, 117, 12337-12345.
[43] S. Dutta, K. S. Narayan, Adv. Mater., 2004, 16, 2151-2155.
[44] Y. Liu, Q. Shi, L. Ma, H. Dong, J. Tan, W. Hua, X. Zhan, J. Mater. Chem. C, 2014, 2, 9505.
[45] W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. Chenb, P. S. Lee, J. Mater. Chem., 2009, 19, 7354-7361.
[46] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes and G. Groeseneken, IEEE Trans. Electron Devices, 2008, 55, 547-556.
[47] R. E. Herbert, Y. Hwang, S. Stemmer, J. Appl. Phys., 2010, 108, 124101.
[48] S. Lee, S. J. Kang, G. Jo, M. Choe, W. Park, J. Yoon, T. Kwon, Y. H. Kahng, D. Y. Kim, B. H. Lee, T. Lee, Appl. Phys. Lett., 2011, 99, 083306.
[49] D. M. Taylor, J. A. Drysdale, I. Torres, O. Fernández, Appl. Phys. Lett., 2006, 89, 183512.

Chapter 4
[1] S.D. Wang, K. Kanai, Y. Ouchi, K. Seki, Org. Electron., 2006, 7, 457–464.
[2] E. Kuwahara, Y. Kubozono, T. Hosokawa, T. Nagano, K. Masunari, A. Fujiwara, Appl. Phys. Lett., 2009, 94, 023305.
[3] H. Yan, T. Kagata, H. Okuzaki, Appl. Phys. Lett., 2009, 94, 023305.
[4] K. Ahn, J. B. Kim, H. Park, H. Kim, M. H. Lee, B. J. Kim, J. H. Cho, M. S. Kang,D. R. Lee, Appl. Phys. Lett., 2009, 94, 023305.
[5] Y. Yi, V. Coropceanu, J.L. Bredas, J. Am. Chem. Soc., 2009, 131, 15777-15783.
[6] B. Park, S. Choi, S. Graham, E. Reichmanis, J. Phys. Chem. C, 2012, 116, 9390-9397.
[7] Y. Zhou, S.T. Han, Z.X. Xu,V. A. L. Roy, Adv. Mater., 2012, 24, 1247-1251.
[8] B. Cho,S. Hun Yu,M. Kim,M. H. Lee,W. Huh,J. Lee,J. Kim,J. H. Cho,J. Y. Lee,Y. J, Song,M. S. Kang, J. Phys. Chem. C, 2014, 118, 18146-18152.
[9] J. Lee, Su. Lee, M. H. Lee,M. Sung Kang, Appl. Phys. Lett., 2015, 106, 063302.
[10] D. H. Kim, H. S. Lee, H. Yang,L. Yang,K. Cho, Adv. Funct. Mater., 2008, 18, 1363-1370.
[11] H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang,K. Cho, J. Am. Chem. Soc., 2008, 130, 10556-10564.
[12] M. Aghamohammadi, A. Fernández, M. Schmidt, A. P. Rodríguez, A. R. Goñi, J. Fraxedas, G. Sauthier, M. Paradinas, C. Ocal,E. Barrena, J. Phys. Chem. C, 2014, 118, 14833-14839.
[13] J. Rivnay,S. C. B. Mannsfeld, C. E. Miller,A. Salleo,M. F. Toney, Chem. Rev., 2012, 112, 5488-5519.
[14] W.T. Chuang, H.S. Sheu, U.S. Jeng, H.H. Wu, P.D. Hong, J.J. Lee, Chem. Mater., 2009, 21 (6), 975-978.
[15] M.C. Liu, H.S. Sheu,S. Cheng, J. Am. Chem. Soc., 2009, 131 (11), 3998-4005
[16] T. Kakudate, N. Yoshimoto, Y. Saito, Appl. Phys. Lett., 2007, 90, 081903.
[17] H. Yang,S. H. Kim, L. Yang, S. Y. Yang,C. E. Park, Adv. Mater., 2007, 19, 2868-2872.
[18] D. Knipp, R. A. Street, A. Völkel,J. Ho, J. Appl. Phys., 2003, 93, 347
[19] T. N. Krauss,Es. Barrena,D. G. d. Oteyza,X. N. Zhang,J. Major,V. Dehm, F. W. rthner, H. Dosch,J. Phys. Chem. C ,2009, 113, 4502-4506.
[20] S. Tatemichi, M. Ichikawa, T. Koyama,Y. Taniguchi, Appl. Phys. Lett., 2006, 89, 112108.
[21] C. Feng, T. Mei, X. Huc, N. Pavel, Org. Electron., 2010, 11, 1713-1718.
[22] X. Gao, X.J. She, C.H. Liu, Q.J. Sun, J. Liu, Appl. Phys. Lett., 2013, 102, 023303.
[23] T. N. Ng, I. Fujieda, R. A. Street,J. Veres, J. Appl. Phys., 2013, 113, 094506.
[24]Y. Hu, Q. Qi, C. Jiang, Appl. Phys. Lett., 2011, 96, 133311.
[25] H. .L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X.W. Liang, Adv. Func. Mater., 2007, 17, 3639-3649.
[26]W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. Chenb, P. S. Lee, J. Mater. Chem., 2009, 19, 7354-7361.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw