進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201611544100
論文名稱(中文) 工程碳足跡與BIM之結合-以建築結構為例
論文名稱(英文) Linking BIM with construction carbon footprint - building structure as an example
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 陳振洋
研究生(英文) Chen-Yang Chen
學號 N66031388
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-張行道
口試委員-劉玉雯
口試委員-馮重偉
口試委員-柯千禾
中文關鍵字 碳足跡  碳排放係數  BIM  UNIFORMAT II  建模規則 
英文關鍵字 Carbon footprint  CO2 emission factor  BIM  UNIFORMAT II  BIM specification 
學科別分類
中文摘要 工程碳足跡為工程中材料與機具施作項目,於全生命週期階段產生之二氧化碳排放量總合,計算碳足跡能夠量化工程對於環境造成之影響。工程要有效減碳,必須從設計階段便思考減碳方針,然而現行的碳足跡計算多在細部設計確定之後,藉由估算設計圖產出工項標單,並由工項標單中之數量與碳排放係數得出總量,在此計算方法下,要在設計前端回饋有困難,且變更設計所提高之成本與減碳效果無法即時呈現。
本研究建立碳足跡與工項對應資料庫,並導入至BIM。分析應用BIM於碳足跡,一為利用UNIFORMAT II分類架構對BIM模型元件編碼,藉以將模型元件依使用功能分類,擷取元件數量以及量體資訊以關聯至工項;二為拆解工項之材料、機具之碳足跡資訊,得出工項碳排放係數,建立工項碳足跡資料庫。兩者彙整後,工項數量及碳排放係數相乘即為工項耗用的碳排放量,加總所有工項產出工程碳足跡。
藉由賦予BIM模型元件UNIFORMAT II編碼並解析其與工項、碳足跡之間的關係,能由BIM模型擷取數量資訊,得出工程碳足跡。簡化計算碳足跡以及標單產出之流程,設計完成即可得出工程碳足跡,檢討與改善便能提至前端,增進其效率。
最後提出主體工程工項建模規則及資訊規範,確保於BIM模型建置階段便考量碳足跡計算需求,並納入所需資訊,減少BIM模型因資訊不足而需反覆修改甚至重新建置的問題。
英文摘要 SUMMARY

A construction project’s carbon footprint is the sum of CO2 emission generated from material production and energy consumption of equipment. Calculating construction carbon footprint can quantify the environment impact caused by a contruction project. The effective way to reduce CO2 emission is to take sustainable measures into account at early design stage. However, the current carbon footprint calculations are mostly based on the work items listed in the bill of quantities after design is finished, which would be difficult to get feedbacks while design is still going. Therefore, the carbon and cost of each sustainable measure can not be comparable before the bill of quantities comes out.

This research focused on: (1) applying BIM (Building Information Modeling) to calculate construction carbon footprint, and (2) establishing specifications of BIM model to make sure that the calculation framework this research created can be implemented. By giving BIM components UNIFORMAT II code and analyzing its corresponding work items, the quantity of each work item can be extracted from the BIM model. Consequently the quantities used in carbon footprint calculation can be obtained from the BIM model instead.

A database was built to store the analyzed information such as correspondences of UNIFORMAT II codes and work items, and CO2 emission factors of each work item. Overall, taking building structure as an example, the feasibility of engaging BIM to calculate construction carbon footprint has been shown.

Keywords: Carbon footprint, CO2 emission factor, BIM, UNIFORMAT II, BIM specification.

INTRODUCTION

With the rising awareness of sustainable issues, the construction industry has been concerned about reducing impacts to the environment. A construction project’s carbon footprint is the sum of CO2 emission generated by materials and energy consumption of equipment. Calculating construction carbon footprint can quantify the environment impact caused by a contruction project. Public construction projects have been requested that 10% of the budget should contain green concept, which means green materials, green design, and green construction techiniques to take sustainability into account (Chen, 2013).
BIM development has become muture gradully. Its three-dimensional concept is assembled by BIM components. By attaching building information, BIM models can be built to simulate real situation, analyze possible conflicts, and solve problems beforehand over all life cycle stages.
The main objectives of this research were: (1) applying BIM to calculate construction carbon footprint, and (2) establishing specifications of BIM model to make sure that the calculation framework created in this research can be implemented.

MATERIALS AND METHODS

To link BIM with construction carbon footprint, this research reviewed previous studies at first, then used a building structure as a case to study. Further details are explained as below.
(1) Literature review
Literatures of carbon footprint calculation and BIM quantity takeoffs were reviewed. Also, two different classification, MasterFormat and UNIFORMAT II, were analyzed to help to classify their correspondence.
(2) Case study
A building was used as a case, and its bill of quantities was analyzed to find out how UNIFORMAT II can be used in practice. By giving BIM componenets UNIFORMAT II codes and analyzing its corresponding work items, the quantity of each work item can be extracted from the BIM model. Consequently the quantities used in carbon footprint calculation would be obtained from BIM model instead. On the other hand, the work items from the bill of quantities can be broken down into raw materials and equipment used, so that the CO2 emission factors can be searched, respectively. Overall, multiplying each raw material and equipment by its CO2 emission factors, the carbon footprint of work items can be calculated.
(3) Database building
To store the analyzed information such as correspondences of UNIFORMAT II codes and work items, and CO2 emission factors of each work item, a database was built. With the database, carbon footprint can be calculated by inputing quantity information classified by UNIFORAMT II. The system would automatically calculate the carbon footprint through following the correespondences of UNIFORMAT II and work items.

RESULTS AND DISCUSSION

This research proposed a framework which can be followed to apply BIM and UNIFORMAT II to construction carbon footprint calculation. The results of conducting a building structure as an example verify that contruction carbon footprint calculation to be accelerated with BIM technology. Using quantity takeoffs of BIM model instead of bill of quantities allows construction carbon footprint to be calculated before the detail design is finished, which means that the iteration time of design and redesign can be reduced.
The results show that concrete construction produces 2,808,577 kgCO2 in total, and the material production is the largest contributor, about 96.1%. The CO2 emission of concrete material transportation, which is 2.8%, is 2 times higer than the CO2 emission generated by equipment operation.

CONCLUSION

To conclude, this research has shown that BIM technology can be used for conbon footprint calculation. A framework was proposed for users to follow while applying UNIFORMAT II in practice. Lastly, this research stipulated a set of BIM specification, which can assure that the BIM components are cut rationally, data needs of calculating carbon footprint would be considered while modeling BIM models, and needed information is included in the BIM model.
Future research is suggested as follow: (1) BIM quantity takeoffs can be extracted by plug-in program to enhance the accuracy, and (2) other construction work, such as interior decoration, or MEP system, can be analyzed to gain complete construction carbon footprint.
論文目次 目錄
摘要 i
Abstract ii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 x
第1章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與流程 2
1.3 研究範圍與限制 3
1.4 論文內容架構 4
第2章 文獻回顧 6
2.1 碳足跡 6
2.1.1 溫室氣體排放 6
2.1.2 碳足跡計算方法 8
2.2 建築資訊模型 10
2.2.1 BIM沿革 10
2.2.2 BIM發展現況 12
2.3 編碼與BIM的關係 14
2.3.1 MasterFormat編碼 14
2.3.2 UNIFORMAT II編碼 16
2.3.3 MasterFormat與BIM 18
2.3.4 UNIFORMAT II與BIM 21
第3章 BIM碳足跡整合系統分析 24
3.1 現有BIM碳足跡計算工具 24
3.1.1 國外計算工具 24
3.1.2 國內計算工具 26
3.2 BIM碳足跡整合架構 27
3.2.1 碳足跡計算功能需求 27
3.2.2 BIM碳足跡整合資訊需求 28
3.2.3 BIM碳足跡整合建構流程 30
3.3 Microsoft Access資料庫 32
3.3.1 Access資料庫功能 32
3.3.2 Access資料庫建置流程 33
3.4 案例驗證 34
3.4.1 案例背景 35
3.4.2 案例BIM模型 36
第4章 BIM碳足跡整合前置作業 38
4.1 解析UNIFORMAT II編碼 38
4.1.1 實務應用UNIFORMAT II 38
4.1.2 編碼新建規則 41
4.1.3 編碼納入規則 42
4.2 實證解析UNIFORMAT II分類成果 43
4.2.1 下部結構 43
4.2.2 外殼 44
4.3 建立元件工項相關性 45
4.3.1 對應編碼至工項 45
4.3.2 工項數量資訊相關性分析 48
4.4 解析工項碳足跡 50
4.4.1 工項拆解原則 50
4.4.2 實證工項碳足跡解析成果 51
第5章 BIM碳足跡整合資料庫建置 56
5.1 BIM碳足跡整合資料庫建置 56
5.1.1 BIM模型匯出數量明細 56
5.1.2 建立資料表 59
5.1.3 建立資料關聯 61
5.1.4 建立查詢 63
5.1.5 建立表單 66
5.2 建模規則建立 67
5.2.1 建模規則考量 67
5.2.2 主體工程工項建模規則及資訊規範 68
5.3 實證BIM碳足跡整合計算成果 71
5.3.1 案例輸入資料 71
5.3.2 BIM碳足跡整合計算結果 73
第6章 結論與建議 79
6.1 結論 79
6.2 建議 81
參考文獻 82

參考文獻 參考文獻
英文文獻
1. Biswas, W. K. (2014). “Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia.” International Journal of Sustainable Built Environment, Vol. 3, pp. 179-186.
2. Charette, R. P. and Marhall, E. H. (1999). UNIFORMAT II Elemental Classification for Building Specification, Cost Estimating, and Cost Analysis, NIST, US.
3. Cheung, F., Rihan, J., Tah, J., Duce, D. and Kurul, E. (2012). “Early Stage Multi-level Cost Estimation for Schematic BIM Model.” Automation in Construction, Vol. 27, pp. 67-77.
4. Eastman, C. M. (1999). Building Product Models: Computer Environments Supporting Design and Construction, CRC Press, Boca Raton FL, US.
5. Gaussin, M., Hu, G., Abolghasem, S., Basu, S., Shankar, M.R. and Bidanda, B. (2013). “Assessing the environmental footprint of manufactured products: a survey of current literature.” International Journal of Production Economics, Vol. 146, pp. 515-523.
6. Green Building Studio. (2016). http://www.autodesk.com/products/green-building-studio/overview, accessed on 20th June, 2016.
7. iCIM. (2012).http://www.openbim.org/case-studies/interoperable-carbon-information-modelling, accessed on 20th June, 2016.
8. IPCC. (2007). http://www.ipcc.ch/index.htm/, accessed on 20th June, 2016.
9. ISO 14040 (2006). Environmental performance. Life cycle assessment-principles and framework. ISO, Swizerland.
10. Jalaei, F. and Jrade A. (2015). “Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings.” Sustainable Cities and Society, Vol. 18, pp. 95-107.
11. McGraw Hill Construction. (2013). http://construction.com/, accessed on 20th June, 2016.
12. Miller, D., Doh, J. H., Panuwatwanich, K. and van Oers, N. (2015). “The contribution of structural design to green building rating systems: An industry perpective and comparison of lige cycle energy considerations.” Sustainable Cities and Society, Vol. 16, pp. 39-48.
13. Monteiro, A. and Martins, J. (2013). “A Survey on Modeling Guidelines for Quantity Takeoff-oriented BIM-based Design.” Automation in Construction, Vol. 35, pp. 238-253.
14. Okoroh, M., Dean, A. and Tracadi, E. (2012). “Strategic Framework for Building Environmental Performance.” Proceedings of the joint CIB W010, W092 & Tg72 International Conference, 23th-25th, January, University of Cape Town.
15. PAS 2050 (2008). Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, BSI, UK.
16. Russell-Smith, S. V., Lepech, M. D., Fruchter, R. and Littman, A. (2015). “Impact of progressive sustainable target value assessment on building design decisions.” Building and Environment, Vol. 85, pp. 52-60.
17. Smith, D. (2007). “An Introduction to Building Information Modeling (BIM).”Journal of Building Information Modeling, Vol. Fall 2007, pp. 12-15.
18. Tally. (2016). http://choosetally.com/, accessed on 20th June, 2016.
19. Todd, J.A., Crawley, D., Geissler, S. and Lindsey, G. (2001). “Comparative assessment of environmental performance tools and the role of the green building challenge.” Building Research & Information. Vol. 29, pp. 324-335.
20. van Nederveen, G. A. and Tolman, F. P. (1992). “Modelling multiple views on buildings.” Automation in Construction, Vol. 1, pp. 215-224.
21. Wang, X., Duan, Z., Wu, L. and Yang, D. (2015) “Estimation of carbon dioxide emission in highway construction: a case study in southwest region of China.” Journal of Cleaner Production, Vol. 105, pp. 705-714.
22. Wiedmann, T. and Minx, J. (2007). A definition of carbon footprint. Nova Science Publishers, Hauppauge, NY, USA.
中文文獻
1. 台北市工務局(2009),工料分析手冊,台北市工務局,台北。
2. 交通部運輸研究所(2013),交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部運輸研究所,台北。
3. 朱士傑(2014),材料製造與施工階段環境衝及分析-以兩橋梁為例,國立成功大學碩士論文。
4. 行政院公共工程委員會(2009),振興經濟擴大公共建設投資計畫落實節能減碳執行方案,http://eem.pcc.gov.tw/node/30243,2016年6月20日網上資料。
5. 行政院公共工程委員會(2012),PCCES預算編製手冊4.3版,行政院公共工程委員會,台北。
6. 行政院公共工程委員會(2016),https://www.pcc.gov.tw/pccap2/,2016年6月20日網上資料。
7. 行政院農委會林務局(2010),工料分析手冊,行政院農委會林務局,台北。
8. 行政院綠能低碳推動會(2015),https://web3.moeaboe.gov.tw/ECW/reduceco21/ content/Content.aspx?menu_id=2467,2016年6月20日網上資料。
9. 行政院環保署 (2010),產品與碳足跡計算指引,行政院環保署,台北。
10. 行政院環保署 (2010),溫室氣體查驗指引,行政院環保署,台北。
11. 行政院環保署(2016),http://www.epa.gov.tw/,2016年6月20日網上資料。
12. 佘品蓁(2012),道路設計因子對行車碳排放影響之研究,國立中央大學營建管理研究所碩士論文。
13. 吳翌禎、郭榮欽等(2014),應用BIM輔助建築設施管理之國內案例探討成果報告,內政部建築研究所委託研究報告,台北。
14. 呂啟銘(2015),應用BIM於建築設計階段之碳足跡模擬計算工具研發,國立成功大學建築研究所碩士論文。
15. 李育杰(2013),應用BIM計算台灣建築物碳排放暨成本效益之整合,國立台灣大學土木工程學系碩士論文。
16. 李亮群(2005),在工程項目管理中的應用研究,國立東北財經大學碩士論文。
17. 李則威(2014),建構以BIM為基礎之橋梁成本管理模式,國立成功大學土木工程學系碩士論文。
18. 林憲德、葉茂榮等(2013),建築物設計階段碳揭露標示法之研究-建築物碳揭露方法及碳排放資料庫之研究,內政部建築研究所委託研究報告,台北。
19. 林憲德等(2015),建築碳足跡,詹氏書局,台北。
20. 張又升(2002),建築物生命週期二氧化碳減量評估,國立成功大學建築研究所博士論文。
21. 張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,國立成功大學碩士論文。
22. 張德鑫等(2011),新興公共工程計畫落實節能減碳評估,行政院農業委員會林務局委託辦理計畫,桃園。
23. 郭宇芬(2012),以BIM模型資訊在設計階段估算建築工程成本之實證研究,國立中華大學營建管理系碩士論文。
24. 郭榮欽、謝尚賢(2010),BIM概觀與國內推行策略,土木水利,第三十七卷,第五期,8-20頁。
25. 陳育群(2013),公共工程編碼系統與BIM結合於預算書製作之研究,國立台灣大學土木工程學系碩士論文。
26. 陳昭秀(2003),橋梁工程碳排放量案例分析之研究,國立中央大學營建管理研究所碩士論文。
27. 陳啟明、彭成邦、余宗賢、柯欽彬、陳敏葳、吳佩蓉、李忠文、黃麗如(2013),應用公共工程經費電腦估價系統(PCCES)架構估算工程二氧化碳排放量委託研究案成果報告,行政院公共工程委員會委託研究計畫,台北。
28. 蔡承諺(2012),應用BIM技術於模板數量計算之研究,國立台灣大學土木工程學系碩士論文。
29. 鄭巧欣(2013),建築物軀體工程碳排構成分析-以南部地區住宅、學校、辦公建築為例,國立成功大學碩士論文。
30. 盧坤勇(2003),資料庫應用講義-活用ACCESS 資料庫, 國立聯合工商技術學院電子工程系,苗栗。
31. 賴東延(2011),導入BIM於臺灣公共工程招標準備階段之研究,國立台灣大學土木工程學系碩士論文。
32. 謝尚賢、郭榮欽、陳奐廷、蔡沅澔(2014),透過案例演練學習BIM:基礎篇,國立臺灣大學出版中心,台北。
33. 鍾敦沛、彭成邦、侯鈞耀、黃志雄、王士傑 (2012),研訂公共工程計畫相關審議基準及綠色減碳指標計算規則委託研究案-成果報告減碳規則篇,公共工程委員會,台北。
34. 羅芳艷、王廣斌、張文娟 (2005),工程項目投資分解體系研究,同濟大學學報,第三十三卷,第8期,1122-1126頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw