進階搜尋


下載電子全文  
系統識別號 U0026-2308201611374600
論文名稱(中文) 氧化/多孔性電紡絲奈米碳纖維之製備及其銅離子吸附材料之研究
論文名稱(英文) Preparation of oxidized/porous electrospun carbon nanofibers and their use as adsorbents for copper ions
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 王健哲
研究生(英文) Chien-Che Wang
學號 N36031073
學位類別 碩士
語文別 中文
論文頁數 129頁
口試委員 指導教授-羅介聰
口試委員-陳東煌
口試委員-李建良
口試委員-關旭強
中文關鍵字 奈米碳纖維  靜電紡絲  銅離子  吸附 
英文關鍵字 electrospun  carbon nanofibers  copper ions  adsorption 
學科別分類
中文摘要 本研究製備不同碳化溫度及氧化改質方式的奈米碳纖維,並應用於銅離子吸附材料。當碳化溫度為1300 °C時,碳纖維之孔洞因碳平面成長而逐漸關閉,微孔體積及比表面積大幅度下降,且大部分官能基皆已斷裂,為疏水性材料,因此對銅離子的吸附效果相當不好。
以純硝酸溶液及硫酸/硝酸混合溶液對碳纖維進行改質。經過強酸改質過後,奈米碳纖維仍然保有完整的纖維狀,纖維的表面並沒有明顯變化,表示酸性改質並沒有破壞纖維原有的型態。經過氧化改質之奈米碳纖維,含有大量含氧官能基,由疏水性材料轉變為親水性材料,使得銅離子能夠更加容易地克服纖維表面與水溶液之界面阻力,能夠有效與銅離子產生作用而達到吸附的效果。在吸附動力學方面,碳纖維無論改質與否,皆較符合擬二階動力學方程式,代表著吸附動力學的決定步驟取決於碳纖維與銅離子之間的交互作用力。而等溫吸附模型中,經氧化改質之奈米碳纖維皆較符合Langmuir model,經由此模型計算可得純硝酸、硫酸/硝酸改質碳纖維之最大吸附量分別為 78.7及169.5 mg/g。硫酸/硝酸改質之碳纖維有較好之吸附效果,其原因可能在於C=O相較於C-OH對銅離子有更好的吸引力,因為碳纖維本體存在著大量芳香烃結構,因此能夠與C=O透過π-π電子轉移而對銅離子有較好之吸引力。
本研究亦以polymethylmethacrylate/polyacrylonitrile (PMMA/PAN) 為前驅物製備多孔性奈米碳纖維,隨PMMA添加量上升表面積明顯增大,且產生大量孔洞,但在銅離子的吸附效果上並沒有太過突出的表現,其原因為所產生之孔洞多為中孔,與銅離子大小差異過大,導致無法有效地提升吸附量。
英文摘要 In this study, we prepared electrospun carbon nanofibers with different carbonization temperatures and oxidation modified manners for the use as copper ion adsorption material. When the carbonization temperature was 1300 °C, pores were closed during the growth of carbon plane, resulting in a decrease in the specific surface area and pore volume. Furthermore, most of the functional groups were removed and fibers became hydrophobic, which resulted in the poor adsorption efficiency of copper ions.
We further modified carbon nanofibers with pure nitric acid and sulfuric acid/nitric acid. After acid modification, oxygen-containing functional groups increased considerably and fibers changed from hydrophobic to hydrophilic. In terms of adsorption kinetics, the adsorption behavior of carbon nanofibers agreed well with the pseudo-second-order equation. In the adsorption isotherm, the oxidized carbon nanofibers agreed with Langmuir model. The obtained maximum amount of adsorption of nitric acid and sulfuric acid/nitric acid modified carbon nanofibers were 78.7 and 169.5 mg/g, respectively.
We also prepared porous carbon nanofibers by electrospinning of poly(methylmethacrylate)/PAN solutions. When the amount of PMMA increased, the surface area and pore volume increased significantly. However, the adsorption of copper ions only showed a slight increase. This was attributed to the large pore size for copper ions, making it impossible for adsorption.
論文目次 目錄
摘要 I
Extended Abstract II
誌謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVII
第一章 緒論 1
1.1 前言 1
第二章 文獻回顧 3
2.1 電紡絲技術 3
2.1.1 電紡絲原理 3
2.1.2 電紡絲製程之參數 5
2.2 孔洞纖維的製備 12
2.2.1 相分離法 13
2.2.2 高溫分解法 13
2.2.3 控制濕度產生孔洞 14
2.3 PAN奈米碳纖維熱處理 15
2.4 吸附機制 17
2.4.1 原理 17
2.4.2 物理吸附 18
2.4.3 化學吸附 18
2.5 吸附過程 19
2.5.1 影響吸附之因素 19
2.6 等溫吸附模式 21
2.6.1 Langmuir Isotherm[31-34] 21
2.6.2 Freundlich Isotherm[31] 22
2.7 電紡絲纖維應用於重金屬吸附 23
2.8 研究動機與目的 32
第三章 實驗方法與步驟 33
3.1 實驗藥品 33
3.2 實驗儀器 34
3.3 實驗方法 37
3.3.1 奈米碳纖維之實驗流程 37
3.3.2 硝酸改質奈米碳纖維之實驗流程 40
3.3.3 硫酸/硝酸改質奈米碳纖維之實驗流程 42
3.3.4 PMMA/PAN多孔性奈米碳纖維之實驗流程 44
第四章 結果與討論 46
4.1 奈米碳纖維 46
4.1.1 奈米碳纖維之型態 46
4.1.2 奈米碳纖維之結構判定 49
4.1.3 奈米碳纖維之官能基鑑定 53
4.1.4 銅離子吸附之研究 57
4.2 硝酸改質奈米碳纖維 65
4.2.1 硝酸改質奈米碳纖維之型態 65
4.2.2 硝酸改質奈米碳纖維之結構判定 69
4.2.3 硝酸改質奈米碳纖維之官能基鑑定 72
4.2.4 銅離子吸附之研究 75
4.3 硫酸/硝酸改質奈米碳纖維 82
4.3.1 硫酸/硝酸改質奈米碳纖維之型態 82
4.3.2 硫酸/硝酸改質奈米碳纖維之結構判定 86
4.3.3 硫酸/硝酸改質奈米碳纖維之官能基鑑定 89
4.3.4 銅離子吸附之研究 92
4.4 PMMA/PAN 多孔性奈米碳纖維 99
4.4.1 多孔性奈米碳纖維形成之機制 99
4.4.2 多孔性奈米碳纖維之型態 100
4.4.3 多孔性奈米碳纖維之結構判定 106
4.4.4 銅離子吸附之研究 109
第五章 結論 120
參考文獻 122
參考文獻 [1] M. Imamoglu and O. Tekir, "Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks," Desalination, vol. 228, pp. 108-113, 2008.
[2] Y. Ren, M. Zhang, and D. Zhao, "Synthesis and properties of magnetic Cu (II) ion imprinted composite adsorbent for selective removal of copper," Desalination, vol. 228, pp. 135-149, 2008.
[3] S. Rengaraj, J.-W. Yeon, Y. Kim, Y. Jung, Y.-K. Ha, and W.-H. Kim, "Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis," Journal of Hazardous Materials, vol. 143, pp. 469-477, 2007.
[4] T. Aman, A. A. Kazi, M. U. Sabri, and Q. Bano, "Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent," Colloids and Surfaces B: Biointerfaces, vol. 63, pp. 116-121, 2008.
[5] Y. Jiang, H. Pang, and B. Liao, "Removal of copper (II) ions from aqueous solution by modified bagasse," Journal of hazardous materials, vol. 164, pp. 1-9, 2009.
[6] A. Aydın, M. İmamoğlu, and M. Gülfen, "Separation and recovery of gold (III) from base metal ions using melamine–formaldehyde–thiourea chelating resin," Journal of applied polymer science, vol. 107, pp. 1201-1206, 2008.
[7] S. Mauchauffée and E. Meux, "Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater," Chemosphere, vol. 69, pp. 763-768, 2007.
[8] J. Mohandas, T. Kumar, S. Rajan, S. Velmurugan, and S. Narasimhan, "Introduction of bifunctionality into the phosphinic acid ion-exchange resin for enhancing metal ion complexation," Desalination, vol. 232, pp. 3-10, 2008.
[9] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, p. 216, 1996.
[10] J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," in Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, 1993, pp. 1698-1703.
[11] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, vol. 43, pp. 4403-4412, 2002.
[12] D. Li, Y. Wang, and Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, vol. 3, pp. 1167-1171, 2003.
[13] K. Lee, H. Kim, H. Bang, Y. Jung, and S. Lee, "The change of bead morphology formed on electrospun polystyrene fibers," Polymer, vol. 44, pp. 4029-4034, 2003.
[14] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of colloid and interface science, vol. 36, pp. 71-79, 1971.
[15] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, vol. 40, pp. 7397-7407, 1999.
[16] H. Fong, I. Chun, and D. Reneker, "Beaded nanofibers formed during electrospinning," Polymer, vol. 40, pp. 4585-4592, 1999.
[17] K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, "Influence of a mixing solvent with tetrahydrofuran and N, N‐dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats," Journal of Polymer Science Part B: Polymer Physics, vol. 40, pp. 2259-2268, 2002.
[18] J. Tao and S. Shivkumar, "Molecular weight dependent structural regimes during the electrospinning of PVA," Materials letters, vol. 61, pp. 2325-2328, 2007.
[19] M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, and H. Horibe, "Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition," Polymer journal, vol. 39, pp. 1060-1064, 2007.
[20] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites science and technology, vol. 63, pp. 2223-2253, 2003.
[21] C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, et al., "Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs," Small, vol. 3, pp. 91-95, 2007.
[22] S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, "Micro-and nanostructured surface morphology on electrospun polymer fibers," Macromolecules, vol. 35, pp. 8456-8466, 2002.
[23] M. Rahaman, A. F. Ismail, and A. Mustafa, "A review of heat treatment on polyacrylonitrile fiber," Polymer Degradation and Stability, vol. 92, pp. 1421-1432, 2007.
[24] D. Zhu, C. Xu, N. Nakura, and M. Matsuo, "Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution," Carbon, vol. 40, pp. 363-373, 2002.
[25] E. Fitzer, W. Frohs, and M. Heine, "Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres," Carbon, vol. 24, pp. 387-395, 1986.
[26] J. Mittal, O. Bahl, and R. Mathur, "Single step carbonization and graphitization of highly stabilized PAN fibers," Carbon, vol. 35, pp. 1196-1197, 1997.
[27] F. Rodriguez-Reinoso and M. Molina-Sabio, "Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview," Carbon, vol. 30, pp. 1111-1118, 1992.
[28] J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P. Alvarez, M. Alvim-Ferraz, and J. Dias, "Activated carbon modifications to enhance its water treatment applications. An overview," Journal of Hazardous Materials, vol. 187, pp. 1-23, 2011.
[29] G. P. Rao, C. Lu, and F. Su, "Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review," Separation and Purification Technology, vol. 58, pp. 224-231, 2007.
[30] M. H. Stenzel, "Remove organics by activated carbon adsorption," Chemical Engineering Progress;(United States), vol. 89, 1993.
[31] E. Altwicker and R. Konduri, "Hydrodynamic aspects of spouted beds at elevated temperatures," Combustion science and technology, vol. 87, pp. 173-197, 1993.
[32] D. M. Ruthven, Principles of adsorption and adsorption processes: John Wiley & Sons, 1984.
[33] I. Langmuir, "Adsorption of gases by solids," J. Am. Chem. Soc, vol. 38, p. 2267, 1916.
[34] I. Langmuir, "The adsorption of gases on plane surfaces of glass, mica and platinum," Journal of the American Chemical society, vol. 40, pp. 1361-1403, 1918.
[35] S. Deng, R. Bai, and J. Chen, "Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers," Journal of colloid and interface science, vol. 260, pp. 265-272, 2003.
[36] D. Bilba, D. Suteu, and T. Malutan, "Removal of reactive dye brilliant red HE-3B from aqueous solutions by hydrolyzed polyacrylonitrile fibres: equilibrium and kinetics modelling," Central European Journal of Chemistry, vol. 6, pp. 258-266, 2008.
[37] P. Kampalanonwat and P. Supaphol, "Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal," ACS applied materials & interfaces, vol. 2, pp. 3619-3627, 2010.
[38] J. Wang, C. Cheng, X. Yang, C. Chen, and A. Li, "A new porous chelating fiber: preparation, characterization, and adsorption behavior of Pb (II)," Industrial & Engineering Chemistry Research, vol. 52, pp. 4072-4082, 2013.
[39] M. Monier and D. Abdel-Latif, "Modification and characterization of PET fibers for fast removal of Hg (II), Cu (II) and Co (II) metal ions from aqueous solutions," Journal of hazardous materials, vol. 250, pp. 122-130, 2013.
[40] D. H. Reneker and A. L. Yarin, "Electrospinning jets and polymer nanofibers," Polymer, vol. 49, pp. 2387-2425, 2008.
[41] E. Buiel and J. Dahn, "Li-insertion in hard carbon anode materials for Li-ion batteries," Electrochimica acta, vol. 45, pp. 121-130, 1999.
[42] E. Buiel, A. George, and J. Dahn, "On the Reduction of Lithium Insertion Capacity in Hard‐Carbon Anode Materials with Increasing Heat‐Treatment Temperature," Journal of The Electrochemical Society, vol. 145, pp. 2252-2257, 1998.
[43] Y. Yang, F. Simeon, T. A. Hatton, and G. C. Rutledge, "Polyacrylonitrile‐based electrospun carbon paper for electrode applications," Journal of Applied Polymer Science, vol. 124, pp. 3861-3870, 2012.
[44] Y. Wu, C. V. Bobba, and S. Ramakrishna, "Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems," Current Organic Chemistry, vol. 17, pp. 1411-1423, 2013.
[45] C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, et al., "Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries," Advanced Functional Materials, vol. 16, pp. 2393-2397, 2006.
[46] C. Kim, S. H. Park, J. I. Cho, D. Y. Lee, T. J. Park, W. J. Lee, et al., "Raman spectroscopic evaluation of polyacrylonitrile‐based carbon nanofibers prepared by electrospinning," Journal of Raman Spectroscopy, vol. 35, pp. 928-933, 2004.
[47] X. Zhong, J. Jin, S. Li, Z. Niu, W. Hu, R. Li, et al., "Aryne cycloaddition: highly efficient chemical modification of graphene," Chem. Commun., vol. 46, pp. 7340-7342, 2010.
[48] Y.-S. Ho and G. McKay, "Pseudo-second order model for sorption processes," Process biochemistry, vol. 34, pp. 451-465, 1999.
[49] Y. Ho and G. McKay, "The sorption of lead (II) ions on peat," Water research, vol. 33, pp. 578-584, 1999.
[50] M. Abdouss, A. Mousavi Shoushtari, A. Majidi Simakani, S. Akbari, and A. Haji, "Citric acid-modified acrylic micro and nanofibers for removal of heavy metal ions from aqueous media," Desalination and Water Treatment, vol. 52, pp. 7133-7142, 2014.
[51] C.-T. Hsieh and H. Teng, "Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics," Carbon, vol. 40, pp. 667-674, 2002.
[52] T.-Z. Ren, L. Liu, Y. Zhang, and Z.-Y. Yuan, "Nitric acid oxidation of ordered mesoporous carbons for use in electrochemical supercapacitors," Journal of Solid State Electrochemistry, vol. 17, pp. 2223-2233, 2013.
[53] C. L. Mangun, K. R. Benak, M. A. Daley, and J. Economy, "Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties," Chemistry of Materials, vol. 11, pp. 3476-3483, 1999.
[54] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al., "Chemical oxidation of multiwalled carbon nanotubes," Carbon, vol. 46, pp. 833-840, 2008.
[55] V. Mitkin, "Mechanochemical synthesis and physical–chemical properties of carbon–fluorocarbon nanocomposition materials. A review," Journal of Fluorine Chemistry, vol. 132, pp. 1047-1066, 2011.
[56] A. Felten, C. Bittencourt, J.-J. Pireaux, G. Van Lier, and J.-C. Charlier, "Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments," Journal of Applied Physics, vol. 98, p. 074308, 2005.
[57] O. A. Oyetade, V. O. Nyamori, B. S. Martincigh, and S. B. Jonnalagadda, "Nitrogen-functionalised carbon nanotubes as a novel adsorbent for the removal of Cu (ii) from aqueous solution," RSC Advances, vol. 6, pp. 2731-2745, 2016.
[58] X. Jing, F. Liu, X. Yang, P. Ling, L. Li, C. Long, et al., "Adsorption performances and mechanisms of the newly synthesized N, N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media," Journal of hazardous materials, vol. 167, pp. 589-596, 2009.
[59] X. Wang, Y. Zheng, and A. Wang, "Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites," Journal of Hazardous Materials, vol. 168, pp. 970-977, 2009.
[60] W. Shen, S. Chen, S. Shi, X. Li, X. Zhang, W. Hu, et al., "Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose," Carbohydrate Polymers, vol. 75, pp. 110-114, 2009.
[61] K. Tong, M. J. Kassim, and A. Azraa, "Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: Equilibrium, kinetics, and thermodynamic studies," Chemical engineering journal, vol. 170, pp. 145-153, 2011.
[62] V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, et al., "Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: a review," Critical Reviews in Environmental Science and Technology, vol. 46, pp. 93-118, 2016.
[63] J. Zhang, J.-K. Lee, Y. Wu, and R. W. Murray, "Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes," Nano Letters, vol. 3, pp. 403-407, 2003.
[64] Z. Ryu, J. Zheng, M. Wang, and B. Zhang, "Characterization of pore size distributions on carbonaceous adsorbents by DFT," Carbon, vol. 37, pp. 1257-1264, 1999.
[65] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, "Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes," Carbon, vol. 41, pp. 1057-1062, 2003.
[66] S.-H. Hsieh, J.-J. Horng, and C.-K. Tsai, "Growth of carbon nanotube on micro-sized Al 2 O 3 particle and its application to adsorption of metal ions," Journal of materials research, vol. 21, pp. 1269-1273, 2006.
[67] M. A. Tofighy and T. Mohammadi, "Adsorption of divalent heavy metal ions from water using carbon nanotube sheets," Journal of Hazardous Materials, vol. 185, pp. 140-147, 2011.
[68] O. Moradi, K. Zare, M. Monajjemi, M. Yari, and H. Aghaie, "The studies of equilibrium and thermodynamic adsorption of Pb (II), Cd (II) and Cu (II) Ions from aqueous solution onto SWCNTs and SWCNT–COOH Surfaces," Fullerenes, Nanotubes, and Carbon Nanostructures, vol. 18, pp. 285-302, 2010.
[69] P. Kampalanonwat and P. Supaphol, "Preparation of hydrolyzed electrospun polyacrylonitrile fiber mats as chelating substrates: a case study on copper (II) ions," Industrial & Engineering Chemistry Research, vol. 50, pp. 11912-11921, 2011.
[70] K. Zhang, H. Li, X. Xu, and H. Yu, "Facile and efficient synthesis of nitrogen-functionalized graphene oxide as a copper adsorbent and its application," Industrial & Engineering Chemistry Research, vol. 55, pp. 2328-2335, 2016.
[71] S. Wanjale, M. Birajdar, J. Jog, R. Neppalli, V. Causin, J. Karger-Kocsis, et al., "Surface tailored PS/TiO 2 composite nanofiber membrane for copper removal from water," Journal of colloid and interface science, vol. 469, pp. 31-37, 2016.
[72] S. Haider and S.-Y. Park, "Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb (II) ions from an aqueous solution," Journal of Membrane Science, vol. 328, pp. 90-96, 2009.
[73] M. Min, L. Shen, G. Hong, M. Zhu, Y. Zhang, X. Wang, et al., "Micro-nano structure poly (ether sulfones)/poly (ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution," Chemical engineering journal, vol. 197, pp. 88-100, 2012.
[74] H. Yan, L. Yang, Z. Yang, H. Yang, A. Li, and R. Cheng, "Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions," Journal of hazardous materials, vol. 229, pp. 371-380, 2012.
[75] M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. J. Parnian, "Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution," Chemical engineering journal, vol. 220, pp. 237-243, 2013.
[76] Y. Song, J. Li, G. Ye, J. Xu, and M. Jiang, "Polyamidoxime/Poly (vinyl alcohol) Composite Chelating Fiber Prepared by Emulsion Spinning and Its Adsorption Properties for Metal Ions," Industrial & Engineering Chemistry Research, vol. 54, pp. 12367-12373, 2015.
[77] T. Hajeeth, K. Vijayalakshmi, T. Gomathi, and P. Sudha, "Removal of Cu (II) and Ni (II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer," International journal of biological macromolecules, vol. 62, pp. 59-65, 2013.
[78] G. Durán-Jiménez, V. Hernández-Montoya, M. Montes-Morán, J. Rangel-Méndez, and R. Tovar-Gómez, "Study of the adsorption-desorption of Cu2+, Cd2+ and Zn2+ in single and binary aqueous solutions using oxygenated carbons prepared by Microwave Technology," Journal of Molecular Liquids, vol. 220, pp. 855-864, 2016.
[79] Z.-C. Wu, Z.-Z. Wang, J. Liu, J.-H. Yin, and S.-P. Kuang, "Removal of Cu (II) ions from aqueous water by l-arginine modifying magnetic chitosan," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 499, pp. 141-149, 2016.
[80] H. Demiral and C. Güngör, "Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse," Journal of Cleaner Production, vol. 124, pp. 103-113, 2016.
[81] O. S. Taskin, N. Ersoy, A. Aksu, B. Kiskan, N. Balkis, and Y. Yagci, "Melamine‐based microporous polymer for highly efficient removal of copper (II) from aqueous solution," Polymer International, 2016.
[82] S. H. Park, H. J. Cho, C. Ryu, and Y.-K. Park, "Removal of copper (II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera," Journal of Industrial and Engineering Chemistry, vol. 36, pp. 314-319, 2016.
[83] Z. Ding, X. Hu, Y. Wan, S. Wang, and B. Gao, "Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests," Journal of Industrial and Engineering Chemistry, vol. 33, pp. 239-245, 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw