進階搜尋


下載電子全文  
系統識別號 U0026-2308201608072200
論文名稱(中文) 營造工程碳足跡分析-以建築結構為例
論文名稱(英文) Construction carbon dioxide analysis-building structure as an example
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 鄭家尹
研究生(英文) Chia-Yin Cheng
學號 n66031396
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 口試委員-黃忠發
口試委員-陳懿佐
口試委員-蔡雅雯
指導教授-張行道
中文關鍵字 碳足跡  建築結構  單價分析表  施工日報  營造工程 
英文關鍵字 carbon footprint  building structure  unit-price analysis tables  construction daily report  construction project 
學科別分類
中文摘要 工程的生命週期中,原、材料的前端碳排放量,可從製造端開始計算,建立更準確的前端盤查結果。與營造較相關的為材料運輸、施工兩階段,維護及廢棄階段亦可盤查或推估其碳排放。
計算工程碳足跡,多半依據設計完編寫之單價分析表中之材料、機具數量,但於實際施工時,施工者的材料、機具採用與使用量不必然與設計一致。
本研究目的為分析建築結構營造工程之碳足跡及比較依據設計與實際施工資料碳足跡之差異。以兩棟建築工程為案例,先以工程設計數量計算其結構體碳足跡,包含工程材料製造、運輸、施工機具能耗、用電及用水等五項,接著以案例完工之連續壁為例,比較設計編列工料與實際施工產生碳排放量之差異,並分析原因。
於設計階段,計算案例工程A棟總碳排放量為5,607,527(kgCO2e),單位面積碳量755(kgCO2e/m2),以材料生產5,017,605(kgCO2e)佔89.5%最高;用電384,228 (kgCO2e)佔6.9%次之。B棟總碳排放量為13,117,488 (kgCO2e),單位面積碳量613 (kgCO2e/m2),以材料生產13,034,827 (kgCO2e)佔99.4%最高;運輸82,661 (kgCO2e)佔0.6%次之。
最後以設計編列的詳細價目表與單價分析表資料,計算連續壁工程之碳排放量為1,030,452 (kgCO2e),依施工日報表填寫之數量與供應商計價資料,計算之實際施工碳排放為1,252,243 (kgCO2e),較設計增加22%。兩者差異量大之兩階段是運輸及用電,碳排放量分別增加30%、減少96%。
關鍵詞:碳足跡、建築結構、單價分析表、施工日報、營造工程
英文摘要 Abstract
Construction carbon dioxide analysis-building structure as an example

Chia-Yin Cheng
Prof. Andrew S. Chang
Department of Civil Engineering
National Cheng Kung University
SUMMARY
Calculating construction carbon footprint is mostly based on the material and equipment quantities of the unit price analysis tables. But in actual construction, the contractor’s usage and adoption of materials and equipment are not necessarily consistent with those from the design.

The purposes of this research were to: (1) calculate construction carbon footprint of the building structure, and (2) find the CO2 emission difference between design and actual construction. The CO2 emissions of an example project were calculated, including material production, transportation, energy consumption of equipment, site electricity consumption and site water consumption. Then the design and actual construction CO2 emissions were compared on a diaphragm wall construction.

Calculated from the design data, the CO2 emissions of Building A is 5,607,527 (kgCO2e), in which the amount of material production is the largest (89.5%), followed by the on-site electricity consumption (6.9%). The CO2 emissions of Building B is 13,117,488 (kgCO2e), in which material production is also the largest (99.4%) and the material transportation is second largest (0.6%).

Finally, the detailed bill of quantities and unit-price analysis tables were used to calculate the CO2 emissions of the diaphragm wall to get 1,030,452 (kgCO2e). From actual construction according to the construction daily report and the budget data, the emission is 1,252,243(kgCO2e). The major differences between the two were on-site electricity consumption and transportation. The CO2 emissions were reduced by 96% and increased by 30%, seperately. Yet, an overall 22% increase in the total CO2 emission was noted.
Keywords: carbon footprint, building structure, unit-price analysis tables, construction daily report, construction project

INTRODUCTION

In Taiwan, 28.8% of total CO2 emissions are related to the building industry (CSD, 2009). Carbon footprint reduction is a global trend in recent years. By calculating CO2 emissions, the environmental impact of the building constructions can be quantified.

The life cycle of a building project can be divided into 6 stages: raw material extraction, material production, material transportation, construction, maintenance, and waste disposal. Material transportation and construction are the two main stages related to construction. The CO2 emissions of materials can be obtained from inventory of the manufacturing side.

This research collected the case project’s quantities of structure items including materials and consutrction equipment, as well as unit fuel consumption of equipment. It also searched CO2 emission coefficients for calculating carbon emissions for the stages of life cycle.

MATERIALS AND METHODS

This research reviewed literature related to building carbon footprint, and understood its life cycle assessment methods and carbon footprint calculation. It then built a boundary of the research in material production to construction phase, investigating the amounts of materials, transportations, energy consumption of equipment, on-site electricity and water consumptions. Moreover, it also collected carbon emission coefficients and unit fuel consumptions of equipment.

Two cases of ongoing building construction were analysed. First, the design quantities of CO2 emissions were calculated about material production, transportation, energy consumption of equipment, on-site electricity consumption and on-site water consumptions. Then the actual construction of a diaphragm wall was taken as a sample to compare the CO2 emission differences between design and actual constructio. The daily reports and budget documents given by the project provided the data to calculate CO2 emissions.


RESULTS AND DISCUSSION

Calculated from the design data, the CO2 emissions of Building A is 5,607,527 (kgCO2e), in which the amount of material production is the largest (89.5%), followed by the on-site electricity consumption (6.9%). The CO2 emissions of Building B is 13,117,488 (kgCO2e), in which material production is also the largest (99.4%) and the material transportation is second (0.6%).

According to the bill of quantities, for the diaphragm wall, material production, material transportation, energy consumption of equipment, and on-site electricity consumption CO2 emissions are 1,030,452 (kgCO2e). However, the actual amount of CO2 emissions equal to 1,252,243 (kgCO2e), indicating a 22% higher emission, or 221,791 (kgCO2e). The results showed that 33,702 (kgCO2e) (96%) emissions was reduced from on-site electricity consumption; and an increase was noted in material transportation emission for 3,219 (kgCO2e) (30%). In material production and material transportation stages, the design CO2 emissions were lower than those in the actual construction.

CONCLUSION

The CO2 emissions of Building A calculated from design data is 5,607,527 (kgCO2e) and the CO2 emissions in unit area is 755 (kgCO2/m2), in which the amount of material production is the largest (89.5%), followed by the on-site electricity consumption (6.9%). The CO2 emissions of Building B is 13,117,488 (kgCO2e) and the CO2 emissions in unit area is 613 (kgCO2/m2), in which material production is also the largest (99.4%) and the material transportation is second (0.6%).

The unit-price analysis table has the constructions cost estimate with work items for the laborers, equipment, and materials. On the job site, the construction daily report is the database which records actual construction works and aggregate laborer, equipment and material usage. This research calculated the CO2 emissions of a diaphragm wall from the design and construction. The results shows that design CO2 emissions is 22% less than that from actual constructions. The major differences were noted between the on-site electricity consumption and material transportation.
論文目次 目錄
摘要 i
Abstract ii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 x
第1章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與步驟 2
1.3 研究範圍與限制 4
第2章 文獻回顧 5
2.1 碳排放評估相關規範 5
2.1.1 碳管理規範與趨勢 5
2.1.2 生命週期碳排放評估 7
2.1.3 資材環境負荷統計方法 9
2.2 碳排放計算 11
2.2.1 工程碳排計算 11
2.2.2 建築工程碳排放 14
第3章 生命週期評估前期作業 16
3.1 施工階段碳排放量計算準備 16
3.1.1 生命週期系統邊界設定 16
3.1.2 施工碳排放計算流程 17
3.1.3 碳排放係數來源 20
3.1.4 計算資料來源 23
3.2 鋼構生產階段碳排 25
3.2.1 鋼結構之生產與加工 25
3.2.2 鋼結構加工碳排放 27
第4章 工程碳足跡計算 31
4.1 工程主要項目 31
4.1.1 工程概述 31
4.1.2 主要工項材料與數量 35
4.2 案例工程碳排放計算 37
4.2.1 碳排放計算內容 37
4.2.2 材料生產 40
4.2.3 運輸油耗 43
4.2.4 機具施工能耗 46
4.2.5 用電 47
4.2.6 用水 48
第5章 設計與實際施工之碳排差異 51
5.1 案例A棟連續壁工程 51
5.1.1 計算邊界說明 51
5.1.2 工作說明 52
5.2 實際施工碳排放計算 54
5.2.1 材料製造階段碳排放量 54
5.2.2 運輸階段碳排放量 55
5.2.3 施工階段碳排放量 56
5.2.4 用電碳排放量 57
5.2.5 用水碳排放量 57
5.3 設計與實際施工之碳排放差異 57
5.3.1 材料差異 58
5.3.2 運輸差異 59
5.3.3 施工機具差異 60
5.3.4 用電差異 61
5.4 碳排放比較結果之建議 63
5.4.1 建議設計者 63
5.4.2 建議施工者 63
第6章 結論與建議 65
6.1 結論 65
6.2 建議 66
參考文獻 68
附錄A 會議紀錄 71
參考文獻 參考文獻
英文文獻
1. Bilec, M., Ries, R., Matthews, H. S., and Sharrard, A. L. (2006). “Example of a Hybrid Life-Cycle Assessment of Construction Processes.” Journal of Infrastructure System, 12(4), 207-215.
2. Crawford, R. H. (2008). “Validation of a hybrid life cycle inventory analysis method.” Journal of Environmental Management, Vol.88, No.3, pp. 496-506.
3. Eastman, C. M. (1999). Building Product Models: Computer Environments Supporting Design and Construction, CRC Press.
Engineering, Vol. 34, No. 2, pp. 23-25.
4. Gaussin, M., Hu, G., Abolghasem, S., Basu, S., Shankar, M. R., and Bidanda, B. (2013). “Assessing the environmental footprint of manufactured products: a survey of current literature.” Int. J. Prod. Econ., Vol. 146, pp. 515-523.
5. Halpin, D. (1985). Financial and cost concepts for construction management,John Wiley & Sons,Canada.
6. Hendrickson, C. T., Lave, L. B., and Matthews, H. S. (2006). Environmental life cycle assessment of goods and services: An input output approach, Resources For The Future, Washington DC.
7. IPCC (Intergovermenmental Penel on Climate Change.)(2007). “The Physical Science Basis-Summary for Policy Makers.” http://www.ipcc.ch/SPM2feb07.pdf, accessed on 20th April, 2016.
8. IPCC (2014). IPCC Fifth Assessment Report: Mitigation of Climate Change, Working Group III, Germany.
9. ISO 14040 (2006). Environmental performance. Life cycle assessment-principles and framework.
10. Li, X., Yang, F., Zhu, Y., and Gao, Y. (2014). “An assessment framework for analyzing the embodied carbon impacts of residential buildings in China.” Energy and Buildings, Vol.85, pp.400-409.
11. Mohapatra, P. K., Siebel, M. A., Gijzen, H. J., van der Hoek, J. P. and Groot, C. A. (2002). “Impoving eco-efficiency of Amsterdam water supply: A LCA approach..” Journal of Water Supply, Vol. 54, No. 4, pp. 217-227.
12. Muench, S.T., Anderson, J. L., Hetfield, J. P., Koester, J. R., and Soderlund, M. (2011). Greenroads Manual v1.5. Seattle, WA: University of Washington.
13. PAS 2050 (2008). “Specification for the assessment of the life cycle greenhouse gas emissions of goods and services.” BSI, UK.
14. Pogorilich, D. A. (1992). “The Daily Report as a Job Management Tool.” Cost Engineering, Vol. 34, No. 2, pp. 23-25.
15. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., and Pennington, D. W. (2004). “Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications.” Journal of Environment International, Vol. 30, pp.701-720.
16. Todd, J.A., Crawley, D., Geissler, S., and Lindsey, G. (2001). “Comparative assessment of environmental performance tools and the role of the green building challenge.” Build. Res. Inf. Vol. 29, pp. 324-335.
17. Truc, H. (2012). Eco-Efficiency Analysis for Roadway projects. Master Thesis, Department of Civil Engineering, National Cheng-Kung University.
18. Wiedmann, T. and Minx, J. (2007). A definition of carbon footprint. Nova Science Publishers, Hauppauge, NY, USA.
中文文獻
1. 內政部營建署(2014),新竹市茄苳接西濱連絡道路新闢工程碳管理暨碳足跡盤查輔導級查證服務工作,內政部營建署,台北。
2. 內政部建築研究所(2010),以生命週期成本分析法評估建築節能設計策略-以公有辦公廳舍為例,內政部建築研究所,台北。
3. 王彥智(2010),營建節能減碳數字的資料品質評估,國立成功大學土木管理研究所碩士論文。
4. 台北市勞工局(2005),鋼構組配施工安全作業程序及圖說-鋼骨大樓施工篇,台北市勞工局,台北。
5. 交通部運輸研究所(2012),交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部運輸研究所,台北。
6. 朱士傑(2014),材料製造與施工階段環境衝及分析-以兩橋梁為例,國立成功大學碩士論文。
7. 行政院公共工程委員會(2009),振興經濟擴大公共建設投資計畫落實節能減碳執行方案,http://eem.pcc.gov.tw/node/30243,2016年7月7日網上資料。
8. 行政院環保署(2010b),碳足跡產品類別規則(CFP-PCR),行政院環保署,台北。
9. 行政院環保署(2011a),產品與碳足跡計算指引,行政院環保署,台北。
10. 行政院環保署(2015c),建築物碳足跡產品類別規則(CFP-PCR),行政院環保署,台北。
11. 行政院環保署(2016c),國家溫室氣體登陸平台,http://ghgregistry.epa.gov.tw/,2016年7月7日網上資料。
12. 行政院環保署,http://www.epa.gov.tw/, 2016年4月20日上網資料。
13. 佘品蓁(2012),道路設計因子對行車碳排放影響之研究,國立中央大學營建管理研究所碩士論文。
14. 李嘉文(2001),施工日報之資料需求,國立成功大學碩士論文。
15. 林志峰,「淺談統包工程實務」,https://www.pcc.gov.tw/,2016年7月1日網上資料。
16. 林憲德(2015),建築碳足跡,詹氏書局,台北。
17. 金屬製品業年鑑(2005),鋼結構篇,金屬中心,台北。
18. 姚志廷、蕭良豪(2008),「綠建材產業分析及管理機制之研究」,建築學報,第66期,中華民國建築學會。
19. 翁以欣(2013),台灣建材碳足跡資料庫盤查方法之研究,國立成功大學碩士論文。
20. 張又升(2002),建築物生命週期二氧化碳減量評估,國立成功大學建築研究所博士論文。
21. 張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,國立成功大學碩士論文。
22. 陳正誠、陳正平(2005),鋼結構設計手冊(極限設計法),中華民國結構工程學會,台北。
23. 陳家豪(2004),印刷電路板之簡易生命週期評估研究,國立成功大學機械工程所碩士論文。
24. 陳啟明、彭成邦、余宗賢、柯欽彬、陳敏葳、吳佩蓉、李忠文、黃麗如(2013),應用公共工程經費電腦估價系統(PCCES)架構估算工程二氧化碳排放量委託研究案成果報告,行政院公共工程委員會委託研究計畫,台北。
25. 經濟部工業局(2016),http://www.idbcfp.org.tw/ViewData.aspx?nnid=97,2016年7月7日網上資料。
26. 經濟部能源局(2015),「104年度電力排放係數」,http://web3.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?menu_id=365,2016年7月7日網上資料。
27. 鄭巧欣(2013),建築物軀體工程碳排構成分析-以南部地區住宅、學校、辦公建築為例,國立成功大學碩士論文。
28. 鍾恕(1991),工程估價系統個體導向模式之分析,國立台灣大學碩士論文。
29. 鍾敦沛、彭成邦、侯鈞耀、黃志雄、王士傑 (2012),研訂公共工程計畫相關審議基準及綠色減碳指標計算規則委託研究案-成果報告減碳規則篇,公共工程委員會,台北。
30. 行政院國家永續發展委員會 (2009),臺灣永續發展指標現況,行政院國家永續發展委員會,台北。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw