進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201604162700
論文名稱(中文) 整合GPS、GLONASS和BeiDou於高精度動態定位之研究
論文名稱(英文) Integrated GPS/GLONASS/BeiDou high-precision kinematic positioning
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 104
學期 2
出版年 105
研究生(中文) 林玠妤
研究生(英文) Chieh-Yu Lin
學號 P66034044
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-楊名
口試委員-史天元
口試委員-薛憲文
中文關鍵字 GNSS  高取樣頻率(1 Hz)  動態定位  長基線 
英文關鍵字 GNSS  High-rate (1 Hz)  Kinematic positioning  Long baseline 
學科別分類
中文摘要 隨著科技的進步,使用者對於衛星定位的精度及效能需求日益提升,尤其在許多測量工程應用或地球科學的研究中, GPS載波相位觀測量被廣泛地使用於動態基線計算,以獲得高效率且高精度的定位成果。而要獲得高精度定位成果的關鍵在於成功的求解相位觀測量上之整數週波值,然而,隨著兩測站之間基線距離增加,整數週波值的求解效能將會受到電離層以及對流層延遲量的影響而降低。因此,有鑑於近年來隨著GNSS的蓬勃發展,目前在亞太地區可收到GPS、GLONASS 和BeiDou 三個正式開放定位、導航及授時服務的衛星訊號,所以本研究整合GPS、GLONASS和BeiDou三星系,建立一個長基線動態計算方法,探討透過整合GNSS觀測量改善衛星幾何,相較於GPS單星系而言,對於動態定位的整數週波值求解效能及定位精度,能夠帶來的改善效益,除此之外,本研究也利用由高到低的取樣頻率資料,分別探討對整合GNSS三星系和GPS單星系而言,不同取樣頻率對整數週波值求解效能的影響。本研究實驗的測試資料為27公里、37公里、和43公里三條基線,並採用高取樣頻率 (1 Hz) 的觀測資料進行測試。成果顯示在整數週波值求解效能方面,整合GNSS三星系相對於GPS單星系,可以更快速且更可靠地解算出正確的整數週波值,而在定位精度方面,整合GNSS三星系相對於GPS也能夠大幅提升定位的精確度,尤其在高程精度的改善十分明顯;另一方面,在採用不同取樣頻率資料評估整數週波值求解效能的成果中,發現多路徑效應 (與時間相關的誤差) 將使得高取樣頻率的益處無法反映在GPS 週波值求解效能上,但是GNSS 的強大的衛星幾何能夠有效地降低多路徑對週波值求解的影響並凸顯出高取樣頻率帶來的效益。
英文摘要 Currently, high-rate (1Hz) GPS precise kinematic positioning based on long-baseline computation has been widely applied to the studies of geodesy and geoscience. And successful ambiguity resolution is the key to obtain centimeter-level accuracy of positioning. However, the GPS precise kinematic positioning usually needs long time to achieve the successful ambiguity resolution since the influences of ionospheric and tropospheric delays cannot be well addressed. Fortunately, due to the development of GNSS (Global Navigation Satellite System), GPS, GLONASS and BeiDou have been fully operational to provide positioning, navigation and timing in Asia-Pacific region. In order to improve the performance of ambiguity resolution and the positioning accuracy, this study integrates GPS, GLONASS, and BDS for high-rate kinematic positioning. Thus, a generalized long-baseline positioning approach is presented to integrate GPS, GLONASS and BeiDou system. With the approach, the results of GPS and integrated GNSS are mutually compared for the ambiguity resolution performance and the positioning accuracy. In the data analysis, three test baselines, 27 km, 37 km and 43 km, were collected by Trimble NetR9 receivers and different sampling rates (from 0.05Hz to 1Hz) are also tested. The results indicate (1) for the positioning accuracy, GNSS effectively increases the RMS (around 50%) in the vertical direction, (2) for the AR performance, high-rate data cannot improve the GPS AR performance but can effectively benefit the GNSS AR performance, (3) with the sampling rate of 1Hz, the GNSS AR is anticipated to be achieved within tens of seconds for kinematic positioning.
論文目次 摘要..............................................I
Abstract.........................................II
誌謝............................................VII
目錄...........................................VIII
表目錄...........................................XI
圖目錄.........................................XIII
第一章 緒論......................................1
1.1 研究背景.....................................1
1.2 文獻回顧.....................................2
1.3 研究動機與目的...............................4
第二章 GNSS概論..................................5
2.1 GPS的現代化計畫..............................5
2.2 GLONASS 的現代化計畫.........................7
2.3 新興的BeiDou系統.............................9
2.4 整合 GNSS 觀測量............................10
2.4.1 坐標系統偏差..............................12
2.4.2 時間系統偏差..............................13
2.4.3 整合系統之間的偏差........................16
2.4.3.1 ISB.....................................16
2.4.3.2 IFB.....................................17
2.4.3.3 ISTB....................................17
第三章 GNSS 觀測量..............................18
3.1 虛擬距離觀測量..............................18
3.2 載波相位觀測量..............................19
3.3 衛星觀測量的誤差來源........................20
3.3.1 與衛星相關的誤差..........................20
3.3.1.1 衛星軌道誤差............................20
3.3.1.2 衛星時錶誤差............................23
3.3.2 與訊號傳播介質有關的誤差..................24
3.3.2.1 電離層延遲量............................24
3.3.2.2 對流層延遲量............................25
3.3.3 與接收機有關的誤差........................26
3.3.3.1 接收儀時錶誤差..........................26
3.3.3.2 週波脫落................................27
3.3.3.3 多路徑效應..............................28
3.4 二次差分觀測量..............................29
3.4.1 一次差分 (single-difference)..............30
3.4.2 二次差分 (double-difference)..............32
第四章 GNSS動態定位基線計算.....................34
4.1 觀測量的線性組合............................34
4.1.1 無電離層線性組合..........................37
4.1.2 四觀測量線性組合..........................38
4.2 對流層參數..................................40
4.3 基線計算模型................................41
4.4 整數週波值求解策略..........................43
4.4.1 LAMBDA 演算法.............................44
4.4.2 Ratio測試.................................45
第五章 實驗成果及分析...........................47
5.1 實驗資料蒐集及觀測量處理策略................47
5.2 整數週波值的求解效能........................49
5.2.1 ASR成果...................................51
5.2.2 MTTFF成果.................................56
5.3 不同取樣頻率對整數週波值求解效能的分析......59
5.4 定位精度....................................62
第六章 結論與建議...............................69
參考文獻........................................71
參考文獻 Al-Shaery, A, Zhang, S, Rizos, C (2013) An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solutions 17(2): 165-173.
Banville, S (2016) GLONASS ionosphere-free ambiguity resolution for precise point positioning. Journal of Geodesy 90(5): 487-496.
Cai, C, Gao, Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions 17(2): 223-236.
Cardellach, E, Behrend, D, Ruffini, G, Rius, A (2000) The use of GPS buoys in the determination of oceanic variables. Earth, Planets and Space 52(11): 1113-1116.
Cheng, P, Wen, H, Cheng, Y, Wang, H (2009) Parameter of the CGCS2000 ellipsoid and comparisons with GRS80 and WGS84. Acta Geodaetica et Cartographica Sinica 38(3), 189-194.
Choi, K, Bilich, A, Larson, K, Axelrad, P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophysical Research Letters 31(22): L22608.
Chu, F, Yang, M (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions 18(2) 263-272.
Chu, F, Yang, M, Wu, J (2016) A new approach to modernized GPS phase-only ambiguity resolution over long baselines. Journal of Geodesy 90(3) 241-254.
Cocard, M, Bourgon, S, Kamali, O, Collins, P (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of Geodesy 82(9): 555-564.
CSNO (2013a) BeiDou navigation satelite system open service performance standard (version 1.0). China Satellite Navigation Office, Beijing, China.
CSNO (2013b) BeiDou navigation satellite system signal in space interface control document open service signal (version 2.0). China Satellite Navigation Office, Beijing, China.
De Jonge, PJ, Teunissen, PJG, Jonkman, NF, Joosten, P (2000) The distributional dependence of the range on triple frequency GPS ambiguity resolution. In: The proceedings of the 2000 national technical meeting of the institute of navigation, Anaheim, CA, January 26 - 28 2000: 605-612.
Delouis, B, Nocquet, J, Vallée, M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters 37(17).
Deng, C, Tang, W, Liu, J, Shi, C (2014) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions 18(3): 375-386.
Dodson, H, Moore, T, Baker, F, Swann, W (1999) Hybrid GPS + GLONASS. GPS Solutions 3(1): 32-41.
Duan, J, Bevis, M, Fang, P, Bock, Y, Chiswell, S, Businger, S, Rocken, C, Solheim, F, Hove, Tv, Ware, R, McClusky, S, Herring, TA, King, RW (1996) GPS meteorology: direct estimation of the absolute value of precipitable Water. Journal of applied meteorology 35(6): 830-838.
Feng, Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy 82(12): 847-862.
Feng, Y, Li, B (2008) A benefit of multiple carrier GNSS signals: regional scale network‐based RTK with doubled inter‐station distances. Journal of Spatial Science 53(2): 135-147.
Feng, Y, Li, B (2009) Three carrier ambiguity resolutions: generalised problems, models and solutions. Journal of global positioning systems 8(2): 115-123.
Feng, Y, Rizos, C (2009) Network-based geometry-free three carrier ambiguity resolution and phase bias calibration. GPS Solutions 13(1): 43-56.
Forssell, B, Martin-Neira, M, Harrisz, R (1997) Carrier phase ambiguity resolution in GNSS- 2. In: The proceedings of the 10th international technical meeting of the satellite division of the institute of navigation (ION GPS 1997), Kansas City, MO.
Gao, W, Gao, C, Pan, S, Wang, D, Deng, J (2015) Improving ambiguity resolution for medium baselines using combined GPS and BDS dual/triple-frequency observations. Sensors 15(11): 27525-27542.
Gelb, A (1974) Applied Optimal Estimation. MIT Press, Cambridge, MA.
Genrich, J, Bock, Y (2006) Instantaneous geodetic positioning with 10-50 Hz GPS measurements: noise characteristics and implications for monitoring networks. Journal of Geophysical Research-Solid Earth 111(B03403): 1-12.
Ghilani, CD (2010) Adjustment Computations: Spatial Data Analysis 5th. John Wiley & Sons, New Jersey.
Goad, C, Goodman, L (1974) A modified Hopfield tropospheric refraction correction model. In: The proceedings of the fall annual meeting of the American geophysical union, San Francisco, California.
Goad, C, Yang, M (1997) A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric Engineering and Remote Sensing 63(9): 1067-1077.
Guo, H, Xu, H (2012) 2012 International workshop on information and electronics engineering application of GPS-RTK technology in the land change survey. Procedia Engineering 29: 3454-3459.
Harrington, P (2009) GPS status and modernization. In: The ICG WG-A, Vienna, Austria.
Hatch, R, Jung, J, Enge, P, Pervan, B (2000) Civilian GPS: the benefits of three frequencies. GPS Solutions 3(4): 1-9.
He, H, Li, J, Yang, Y, Xu, J, Guo, H, Wang, A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions 18(3): 393-403.
Heinrichs, G, Wittmann, E, Kronberger, R, Drewes, C, Ostermann, T, Springer, A, Maurer, L (2004) Hybrid Galileo/W-CDMA receiver prototype for mass-market applications. In: The proceedings of the 17th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2004), Long Beach, CA, September 21 - 24 2004: 2228-2238.
Hoechner, A, Ge, M, Babeyko, A, Sobolev, S (2013) Instant tsunami early warning based on real-time GPS - Tohoku 2011 case study. Natural Hazards and Earth System Science 13(5): 1285-1292.
Hofmann-Wellenhof, B, Lichtenegger, H, Wasle, E (2008) GNSS-global navigation satellite systems. Springer, Vienna, Austria.
Ishikawa, K, Takiguchi, J, Amano, Y, Hashizume, T (2006) A Mobile Mapping System for road data capture based on 3D road model. In: The 2006 IEEE conference on computer aided control system design, 2006 IEEE international conference on control spplications, 2006 IEEE international symposium on intelligent control. Munich, Germany, October 4-6 2006: 638 - 643
Jacobson, L (2007) GNSS Markets and Applications. Artech House, Norwood, MA.
Julien, O, Alves, P, Cannon, M, Lachapelle, G (2004a) Improved triple-frequency GPS/GALILEO carrier phase ambiguity resolution using a stochastic ionosphere modeling. In: The proceedings of the 2004 national technical meeting of the institute of navigation, San Diego, CA, January 26 - 28 2004: 441-452.
Julien, O, Cannon, M, Alves, P, Lachapelle, G (2004b) Triple frequency ambiguity resolution using GPS/GALILEO. European Journal of Navigation 2(2): 51-56.
Kaartinen, H, Hyyppä, H, Vastaranta, M, Kukko, A, Jaakkola, A, Yu, X, Pyörälä, J, Liang, X, Liu, J, Wang, A, Kaijaluoto, R, Melkas, T, Holopainen, M, Hyyppä, H (2015) Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests 6(9): 3218-3236.
Kalman, R (1960) A new approach to linear filtering and prediction problems. Transactions of the ASME – Journal of Basic Engineering 82 (Series D): 35-45.
Kaplan, E, Hegarty, C (2005) Understanding GPS: principles and applications 2nd. Artech House, Norwood, MA.
Kato, T, Terada, Y, Ito, K, Hattori, R, Abe, T, Miyake, T, Koshimura, S, Nagai, T (2005) Tsunami due to the 2004 September 5th off the Kii peninsula earthquake, Japan, recorded by a new GPS buoy. Earth, Planets and Space 57(4): 297-301.
Klobuchar, J (1987) Ionospheric time-delay algorithm for dingle-frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems AES-23(3): 325-331.
Klobuchar, J (1996) Ionospheric effects on GPS (vol. 1). American Institute of Aeronautics and Astronautics, Washington, DC.
Larson, K (2009) GPS seismology. Journal of Geodesy 83(3): 227-233.
Larson, K, Bilich, A, Axelrad, P (2007) Improving the precision of high-rate GPS. Journal of Geophysical Research: Solid Earth 112(B05422).
Leick, A, Rapoport, L, Tatarnikov, D (2015) GPS satellite surveying 4th. John Willey & Sons, USA.
Li, B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis. Journal of Geodesy 90(7): 593-610.
Li, H, Dang, Y, Bei, J, Yang, F (2013a) Research on spatiotemporal unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of Geodesy and Geodynamics 33(4): 73-78.
Li, X, Ge, M, Zhang, H, Nischan, T, Wickert, J (2013b) The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS. Advances in Space Research 51(6): 1008-1018.
Melbourne, W (1985) The case for ranging in GPS based geodetic system. In: The first international symposium on position with global positioning system, Rockville, Maryland.
Miller, J (2007) Global positioning system policy and program update. In: The proceedings of the 20th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2007), Fort Worth, Texas, September 25 - 28 2007.
Montenbruck, O, Hauschild, A, Hessels, U (2011) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solutions 15(3): 193-205.
Montenbruck, O, Hauschild, A, Steigenberger, P, Hugentobler, U, Teunissen, P, Nakamura, S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions 17(2): 211-222.
Nadarajah, N, Teunissen, P, Raziq, N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13(7): 9435–9463.
Nadarajah, N, Teunissen, P, Sleewaegen, J, Montenbruck, O (2015) The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning. GPS Solutions 19(3): 357-368.
Niell, A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth 101(B2): 3227-3246.
O’Keefe, K, Julien, O, Cannon, M, Lachapelle, G (2006) Availability, accuracy, reliability, and carrier-phase ambiguity resolution with Galileo and GPS. Acta Astronautica 58(8): 422-434.
Odijk, D (2003) Ionosphere-free phase combinations for modernized GPS. Journal of surveying engineering 129(4): 165-173.
Odijk, D, Teunissen, P (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions 17(4): 521-533.
Odolinski, R, Teunissen, P, Odijk, D (2014) Combined GPS + BDS + Galileo + QZSS for long baseline RTK positioning. In: The proceedings of the 27th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2014), Tampa, Florida.
Odolinski, R, Teunissen, PJG, Odijk, D (2015a) Combined GPS + BDS for short to long baseline RTK positioning. Measurement Science and Technology 26(4): Article ID 045801.
Odolinski, R, Teunissen, PJG, Odijk, D (2015b) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions 19(1): 151-163.
Ogaja, C, Satirapod, C (2007) Analysis of high-frequency multipath in 1-Hz GPS kinematic solutions. GPS Solutions 11(4): 269-280.
Paziewski, J, Wielgosz, P (2015) Accounting for Galileo–GPS inter-system biases in precise satellite positioning. Journal of Geodesy 89(1): 81-93.
Puente, I, González-Jorge, H, Martínez-Sánchez, J, Arias, P (2013) Review of mobile mapping and surveying technologies. Measurement 46(7): 2127-2145.
Revnivykh, S (2012) GLONASS status and modernization. In: The 7th meeting of the international GNSS committee (IGC-7), Beijing, China.
Richert, T, El-Sheimy, N (2007) Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solutions 11(1): 11-19.
Roberts, A, Tayebi, A (2013) A new position regulation strategy for VTOL UAVs using IMU and GPS measurements. Automatica 49(2): 434-440.
Roßbach, U (2001) Positioning and navigation using the Russian satellite system GLONASS. Schriftenreihe der Universität der Bundeswehr München, 71.
Saastamoinen, J (1973) Contributions to the theory of atmospheric refraction. Bulletin géodesique 107(1): 13-34.
Schaffrin, B, Bock, Y (1988) A unified scheme for processing GPS dual-band phase observations. Bulletin géodesique 62(2): 142-160.
Schlötzer, S, Martin, S (2005) Performance study of multi carrier ambiguity resolution techniques for Galileo and modernized GPS. In: The proceedings of the 18th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2005), Long Beach, CA.
Seeber, G (2003) Satellite geodesy 2nd. Walter de Gruyter, Germany.
Shi, C, Zhao, Q, Hu, Z, Liu, J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions 17(1): 103-119.
Shi, C, Zhao, Q, Li, M, Tang, W, Hu, Z, Lou, Y, Zhang, H, Niu, X, Liu, J (2012) Precise orbit determination of Beidou Satellites with precise positioning. Science China Earth Sciences 55(7): 1079-1086.
Steigenberger, P, Hugentobler, U, Hauschild, A, Montenbruck, O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. Journal of Geodesy 87(6): 515-525.
Tang, W, Deng, C, Shi, C, Liu, J (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions 18(3): 335-344.
Teunissen, P (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70(1-2): 65-82.
Teunissen, P, Joosten, P, Tiberius, C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: The proceedings of the 15th international technical meeting of the satellite division of the institute of navigation (ION GPS 2002), Portland, OR.
Teunissen, P, Kleusberg, A (1998) GPS for geodesy. Springer-Verlag Berlin Heidelberg, Germany.
Teunissen, P, Odijk, D (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of Geodesy 76(9): 523-535.
Teunissen, P, Odolinski, R, Odijk, D (2014) Instantaneous BeiDou + GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy 88(4): 335-350.
Nee, RDJ van (1992) Multipath effects on GPS code phase measurements. Navigation 39(2): 177-190.
Vdovin, V (2013) National reference systems of the Russian fedreation, used in GLONASS, including the user and fundamental segments. In: The 8th meeting of the international committee on GNSS (ICG-8), Dubai, United Arab Emirates.
Verhagen, S (2004) Integer ambiguity validation: an open problem? GPS Solutions 8(1): 36-43.
Verhagen, S, Teunissen, P (2013) The ratio test for future GNSS ambiguity resolution. GPS Solutions 17(4): 535-548.
Vollath, U (2004) The Factorized Multi-Carrier Ambiguity Resolution (FAMCAR) approach for efficient carrier-phase ambiguity estimation. In: The proceedings of the 17th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2004), Long Beach, CA.
Vollath, U, Birnbach, S, Landau, L, Fraile-ordonez, J, Marti-neira, M (1999) Analysis of three-carrier ambiguity resolution technique for precise relative positioning in GNSS-2. Navigation 46: 13-23.
Wang, J, Rizos, C, Stewart, P, Leick, A (2001) GPS and GLONASS integration: modeling and ambiguity resolution issues. GPS Solutions 5(1): 55-64.
Wang, K, Rothacher, M (2013) Ambiguity resolution for triple-frequency geometry-free and ionosphere-free combination tested with real data. Journal of Geodesy 87(6): 539-553.
Wang, Z, Wu, Y, Zhang, K, Meng, Y (2005) Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization. Positioning 1(9).
Wei, Z (2008) China geodetic coordinate system 2000. Journal of Geodesy and Geodynamics 28(6): 1-5.
Wells, D, Beck, N, Delikaraoglou, D, Kleusberg, A, Krakiwsky, E, Lachapelle, G, Langley, RB, Nakiboglu, M, Schwarz, KP, Tranquilla, JM, Vanicek, P (1999) Guide to GPS Positioning. Canadian GPS Associates, and University of New Brunswick, Fredericton, Canada.
Wu, J, Hsieh, CH (2010) Statistical modeling for the mitigation of GPS multipath delays from day-to-day range measurements. Journal of Geodesy 84(4): 223-232.
Wubbena, G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: The first international symposium on precise positioning with the global positioning system, Rockville.
Xu, A, Xu, Z, Xu, X, Zhu, H, Sui, X, Sun, H (2014) Precise Point Positioning Using the Regional BeiDou Navigation Satellite Constellation. Journal of Navigation 67(3): 523-537.
Xu, G (2007) GPS: Theory, algorithms and applications 2nd. Springe, New York, USA.
Xu, H (2012) Application of GPS-RTK technology in the land change survey. Procedia Engineering 29: 3454-3459.
Yuan, L, Huang, D, Ding, X, Xiong, Y, Zhong, P, Li, C (2004) On the influence of signal multipath effects in GPS carrier phase surveying. Acta Geodaetica et Cartographica Sinica 33(3): 210-215.
Zhang, J, Lachapelle, G (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. Journal of Geodesy 75(5): 255-266.
Zhang, X, He, X (2015) BDS triple-frequency carrier-phase linear combination models and their characteristics. Science China Earth Sciences 58(6): 896-905.
Zhang, X, He, X (2016) Performance analysis of triple-frequency ambiguity resolution with BeiDou observations. GPS Solutions 20(2): 269-281.
Zueva, A, Novikov, E, Pleshakov, D, Gusev, I (2014) System of geodetic parameters "Parametry Zemli 1990" PZ-90.11. In The 9th meeting of the international committee on GNSS (ICG-9), Prague, Czech Republic.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw