進階搜尋


下載電子全文  
系統識別號 U0026-2308201515454700
論文名稱(中文) 研製高光取出及量子效率之氮化鎵藍光發光二極體
論文名稱(英文) Investigation and Fabrication of GaN-based Blue Light Emitting Diode with High Light Extraction and Quantum Efficiency
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 陳秉宏
研究生(英文) Ping-Hung Chen
學號 L78971089
學位類別 博士
語文別 英文
論文頁數 122頁
口試委員 指導教授-賴韋志
召集委員-許進恭
口試委員-張守進
口試委員-郭政煌
口試委員-黃建彰
口試委員-吳育任
口試委員-郭浩中
口試委員-杜立偉
口試委員-洪瑞華
中文關鍵字 氮化鎵  發光二極體  氧化鋅參雜鋁  氧化鋅鋁參雜釔  歐姆接觸  熱穩定  奈米柱  光取出效率  P型氮化銦鎵 
英文關鍵字 GaN  light emitting diode  LED  AZO  AZO:Y  ohmic contact  thermal stability  nano pillar  light extraction efficiency  LEE  p-InGaN 
學科別分類
中文摘要 本論文主要研究及製作具有高光取出效率及高量子效率的氮化鎵藍光發光二極體,內容可分為三大部分。第一部分,我們在多重量子井與p-AlGaN之間成長一層p-In0.01Ga0.99N層,因為能帶的改變,我們可以提升LED之發光效率約27%,降低操作電壓Vf 由3.34 V降至2.99 V及改善EQE droop現象,由36.7%降為23.8%。第二部分是將透明導電層材料氧化鋅參雜鋁(AZO)及氧化鋅鋁參雜釔(AZO:Y)應用於氮化鎵藍色發光二極體上,經由RTA 500℃熱退火後,AZO可以直接與p-GaN達到良好的歐姆接觸,其特徵接觸電阻為2.19 × 10-2 Ω•cm2,此應用在LED (表面為p-GaN)上之光電特性可以達到與應用在一般LED (表面具有n+-SPS層)幾乎相同。再者,透過稀有元素釔參雜至AZO中(即AZO:Y),經過RTA熱退火實驗後,可以發現LED之熱穩定性會更好。第三部分,我們研究了微米柱及奈米柱應用於氮化鎵藍色發光二極體上,透過柱狀結構,我們可以提升LED發光效率分別為11% (微米柱)及48% (奈米柱)。另外,我們也將奈米柱應用在具有網狀ITO結構的LED中,我們成功的在網眼及mesa外圍區域,製作出氮化鎵奈米柱,透過結合PSS、網狀ITO之P型電極及奈米柱,我們可以提升LED發光效率約80%。
英文摘要 This dissertation is about the investigation and fabrication of GaN-based LED with high light extraction and quantum efficiency. It can be divided into three parts.
Fist, by inserting the 5-nm-thick p-In0.01Ga0.99N layer to MQWs and p-AlGaN, we could enhance the electron carrier confinement in the MQW region and hole injection efficiency. It was found that we could enhance the output power by 27%. It was also found that we could reduce the 20 mA forward voltage from 3.34 V to 2.99 V and the efficiency droop from 36.7% to 23.8%.
In the second part, we demonstrated the GaN-based blue LED with ZnO:Al and AZO:Y transparent conducting layer (TCL). The AZO film forms good ohmic contact with p-GaN without any inserted contact layer after 500℃ RTA annealing. The specific contact resistance of annealed AZO and p-GaN is 2.19 × 10-2 Ω•cm2. It was found that the 20mA forward voltage and output power for LED with AZO on p-GaN upper contacts was almost same with that for LED with AZO on n+-SPS upper contacts. Otherwise, by adding some ytterbium into the AZO film (i.e. AZO:Y), we can enhance thermal stability of GaN-based LEDs after high temperature RTA annealing.
In the third part, we demonstrated the GaN-based LEDs with micro-pillars and nano-pillars around the mesa region. It was found that output power enhancement of LED with micro-pillars and nano-pillars were about 11% and 48%, respectively. Otherwise, we also report the fabrication of GaN-based LEDs with mesh ITO p-contact and nano-pillars. We successfully formed vertical GaN nano-pillars inside the mesh regions and on the mesa-etched regions. It was found that we could reach the more than 80% of 20mA-output power improvements of LEDs by combining the PSS, mesh ITO p-contact and nano-pillars.
論文目次 摘要........I
Abstract........II
致謝.......IV
Contents.........V
Table Captions.......VII
Figure Captions........VIII
CHAPTER 1 Introduction......1
1.1 Background of III-Nitride Semiconductors....1
1.2 Motivation and Overview of This Dissertation....8
Reference in Capter 1......10
CHAPTER 2 Metal Organic Vapor Phase Epitaxy System....15
2.1 Introduction........15
2.2 MOCVD Reactor......17
2.3 In-Situ Monitoring of Epitaxy Growth.....22
Reference in Capter 2.......28
CHAPTER 3 GaN-based LED with p-InGaN Layer....30
3.1 Introduction........30
3.2 Fabrication and Characteristic of GaN-based LED with p-InGaN Layer.........31
Reference in Chapter 3.....42
CHAPTER 4 GaN-based LEDs with ZnO:Al and AZO:Y Upper Contact..46
4.1 Introduction......46
4.2 Low Operation Voltage of GaN-based LEDs with Al-doped ZnO Upper Contact Directly on p-type GaN without Insert Layer..48
4.3 GaN-Based LEDs With AZO:Y Upper Contact...62
Reference in Chapter 4.....78
CHAPTER 5 The Study of Light Output Power Improvement in GaN-Based Light Emitting Diodes with Pillars Structures......83
5.1 Introduction... .....83
5.2 GaN-based LEDs with Pillars Structures Around the Mesa egion.85
5.3 GaN-based LEDs with Mesh ITO p-contact and nanopillars..102
Reference in Chapter 5.......113
CHAPTER 6 Conclusions.......118
6.1 Conclusions.......118
Publication List........121
參考文獻 Reference in Capter 1
[1] S. Strite, M.E. Lin, and H. morkoc, “Progress and prospects for GaN and III-V nitride semiconductors,” Thin Solid Films, vol. 231, issue 1-2, pp. 197-210, 1993.
[2] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, William J. Schaff, Yoshiki Saito, and Yasuchi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
[3] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, and William J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741-4743, 2002.
[4] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunction,” Appl. Phys. Lett., vol. 60, pp. 3027-3029, 1992.
[5] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, pp. 1786-1787, 1993.
[6] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (> 80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, pp. 2457-2459, 2000.
[7] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “ AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277-279, 1999.
[8] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem., vol. 234, pp. 282, 1940.
[9] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposition single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
[10] H. Manasevi, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials,” J. Electrochem. Soc., vol. 118, pp. 1864-1868, 1971.
[11] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN electroluminescent diodes,” RCA Review, vol. 32, pp. 383, 1971.
[12] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
[13] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys.,vol. 30, pp. L1705-1707, 1991.
[14] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L21, 1989.
[15] S.D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes,” Appl. Phys. Lett., vol. 66, pp. 1249, 1996.
[16] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N Sawaki, “Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE,” J. Cryst. Growth, vol. 98, pp. 209, 1989.
[17] D. L. Barton, M. Osinski, C. J. Helms, N. H. Berg, B. S. Phillips, “Life tests and failure analysis of AlGaN/InGaN/GaN blue light-emitting diodes," SPIE-Int. Soc. Opt. Eng, vol. 2694, pp. 64, 1996.
[18] Sun-Kyung Kim, Hyun Kyong Cho, Duk Kyu Bae, Jeong Soo Lee, Hong-Gyu Park, and Yong-Hee Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett., vol. 92, pp. 241118, 2008.
[19] J. C. Harris, H. Brisset, T. Someya, and Y. Arakawa, “Growth condition dependence of the photoluminescence properties of InxGa1-xN/InyGa1-yN multiple quantum wells grown by MOCVD,” Jpn. J. Appl. Phys., vol. 38, pp. 2613-2616, 1999.
[20] E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Bourtros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett., vol. 70, pp. 461-463, 1997.
[21] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to Piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382-385, 1997.
[22] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constant of III-V nitrides,” Phys. Rev. B, vol. 56, pp. 10024-10027, 1997.
[23] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, pp. L139-L142, 1991.
[24] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p‐type conduction in Mg‐doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, no. 5, pp. 593-594, 1994.
[25] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, 1996.
[26] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, no. 8, pp. 4491-4497, 1999.
[27] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2340-2342, 1999.
[28] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2289-2291, 1999.
[29] J. S. Jang, S. J. Park, and T. Y. Seong, “Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment,” J. Vac. Sci. Technol. B, vol. 17, no. 6, pp. 2667-2670, 1999.
[30] J. O. Song, J. S. Kwak, and Y. Park, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 86, pp. 062104-1-3, 2005.
[31] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2953-5955, 1998.
[32] D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and L. F. Lester, “Temperature Behavior of Pt/Au Ohmic Contacts to p-GaN,” Mater. Res. Soc. Symp. Proc., 468, pp. 421, 1997.
[33] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni⁄Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5920-5922, 2004.
[34] M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Y. Koide, T. Uemura, N. Shibata, and M. Murakami, “Low-resistance Ta/Ti Ohmic contacts for p-type GaN,” Appl. Phys. Lett., vol. 74, no. 2, pp. 275-277, 1999.
[35] J. S. Jang, I. S. Chang, H. K Kim, T. Y. Seong, S. Lee, and S. J. Park, “Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 1, pp. 70-72, 1999.
[36] L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang and A. Khan, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, no. 23, pp. 3451-3453, 2000.
[37] V. Adivarahan, A. Lunev, M. Asif Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p-GaN for high-current devices,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2781-2783, 2001.

Reference in Capter 2
[1] Y. -F. Wu, B. P. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett. vol. 69, pp. 1438 , 1996.
[2] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrate,” Appl. Phys. Lett., vol. 12, pp. 156, 1968.
[3] H. M. Manasevit, F. Erdmann and W. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials,” J. Electrochem. Soc., vol. 118, no. 11, pp. 1864-1868, 1971.
[4] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-2114, 1989.
[5] S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN/AlGaN DH blue light emitting diode,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, 1994.
[6] S. Nakamura, M. Senoh, S. Nagahama, “Optical gain and carrier lifetime InGaN MQW structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 1568-1570, 1996.
[7] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD,” J. Crystal Growth, vol. 77, no. 1-3, pp. 188-193, 1986.
[8] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory, and Practice,” Academic Press, Inc., San Diego, 1989.

Reference in Chapter 3
[1] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaNbased UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl.Phys., vol. 38, no. 7A, pp. 3976–3981, Jul. 1999.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 2, pp. 278–283, Mar. 2002.
[3] C. H. Kuo, C.W. Kuo, C.M. Chen, B. J. Pong, and G.C.Chi, “Nitride based light-emitting diodes with p-AlInGaN surface layers prepared at various temperatures,” Appl. Phys. Lett., vol. 89, 2006.
[4] C. H. Kuo, C.M. Chen, C. W. Kuo, C. J. Tun, C. J. Pan, B. J. Pong, and G. C. Chi, “Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers,” Appl.Phys.Lett., vol. 89, 2006.
[5] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J Appl.Phys., vol. 41, 2002.
[6] C. H. Kuo, L. C. Chang, C. W. Kuo, and C. J. Tun, “Efficiency Improvement of GaN-Based Light-Emitting Diode Prepared on GaN Nanorod Template,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 257–259, Feb. 2010.
[7] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert,M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol. 93, 2008.
[8] D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar 2021 InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technol., vol. 9, no. 4, pp. 190–198, Apr. 2013.
[9] R. M. Farrell1, E. C. Young1, F. Wu1, S. P. DenBaars1, and J. S. Speck1, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol, vol. 27, 2012.
[10] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light emitting diodes with large overlap quantum wells,” Opt. Exp., vol. 19, 2011.
[11] R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett., vol. 91, 2007.
[12] H. Zhao, R. A. Arif, and N. Tansu, “Self-consistent gain analysis of type-II ‘W’ InGaN-GaNAs quantum well lasers,” J. Appl. Phys., vol. 104, 2008.
[13] C. H. Kuo, Y. K. Fu, G. C. Chi, and S. J. Chang, “Efficiency dependence on degree of localization states in GaN-based asymmetric two-step light-emitting diode with a low indium content InGaN shallow step,” IEEE J. Quantum Electron., vol. 46, no. 3, pp. 391–395, Mar. 2010.
[14] J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett., vol. 92, 2008.
[15] S. Choi, H. J. Kim, S. S. Kim, J. Liu, J. Kim, J. H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride-based visible light emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett., vol. 96, 2010.
[16] H. Zhao, G. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes,” J. Display Technol., vol. 9, no. 4, pp. 212–225, Apr. 2013.
[17] I. E. Titkov, D. A. Sannikov, Y. M. Park, and J. K. Son, “Blue light emitting diode internal and injection efficiency,” AIP Advances, vol. 2, 2012.
[18] G. Liu, J. Zhang, C.-K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photon. J., vol. 5, 2013.
[19] Y. K. Kuo, M. C. Tsai, S. H. Yen, T. C. Hsu, and Y. J. Shen, “Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1214–1220, Aug. 2010.
[20] J. R. Chen, T. C. Lu, H. C. Kuo, K. L. Fang, K. F. Huang, C. W. Kuo, C. J. Chang, C. T. Kuo, and S. C. Wang, “Study of InGaN-GaN light emitting diodes with different last barrier thickness,” IEEE Photon. Technol. Lett., vol. 22, no. 12, pp. 860–862, Jun. 2010.
[21] T. Suski, G. Staszczak, S. Grzanka, R. Czerneck, E. L. Staszewska, R. Piotrzkowski, L. H. Dmoski, A. Khachapuridze, M. Krysko, P. Perlin, and I. Grzegory, “Hole carrier concentration and photoluminescence in magnesium doped InGaN and GaN grown on sapphire and GaN misoriented substrates,” Appl. Phys. Lett., vol. 108, 2010.
[22] J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R. D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-layers on the electrical and electroluminescence properties of green light emitting diodes,” J. Electron. Mater., vol. 36, pp. 426–430, 2007.
[23] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, S. M. Wang, and B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2567–2570, Dec. 2003.
[24] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu, and U. H. Liaw, “High efficient InGaN/GaN MQW green light emitting diodes with CART and DBR structures,” IEEE Electron Device Lett., vol. 23, no. 3, pp. 130–132, Mar. 2002.
[25] Y. K. Kuo, Y. H. Shih, and M. C. Tasi, “Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier,” IEEE Photon. Technol. Lett., vol. 23, no. 21, pp. 1630–1632, Nov. 2011.

Reference in Chapter 4
[1] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes,” IEEE J. Sel. Top. Quan. Electron., vol. 8, pp. 278-283, 2002.
[3] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 18, pp. 1152-1154, 2006.
[4] S. Nakamura and G. Fasol, “The Bule Laser Diode,” Springer, Berlin, 1997.
[5] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, “Highly reliable nitride based LEDs with SPS + ITO upper contacts,” IEEE J. Quan. Electron., vol. 39, pp. 1439-1443, 2003.
[6] W. H.Lan, “Wavelength shift of gallium nitride light emitting diode with p-down structure,” IEEE Tran. Electron. Dev., vol. 52, pp. 1217-1219, 2005.
[7] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett., vol. 78, pp. 3337-3339, 2001.
[8] Y. C. Lin, S. J. Chang, Y. K. Su, C. S. Chang, S. C. Shei, J. C. Ke, H. M. Lo, S. C. Chen and C. W. Kuo, “High power nitride based light emitting diodes with Ni/ITO p-type contacts,” Solid State Electron., vol. 47, no. 9, pp. 1565-1568, Sept. 2003.
[9] R. H. Horng, D. S. Wuu, Y. C. Lien and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 79, pp. 2925-2927, 2001.
[10] T. Minami, H. Nanto and S. Takata, “Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys., vol. 23, pp. L280-L282, 1984.
[11] J.O. Song, K. K. Kim, S. J. Park, T. Y. Seong, “Highly low resistance and transparent Ni/ZnO ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 83, no. 3, pp.479-481, 2003.
[12] Jung SP, Ullery D, Lin CH, Lee HP, Lim JH, Hwang DK, et al. “High-performance GaN-based light-emitting diode using high-transparency Ni/Au/Al-doped ZnO composite contacts,” Appl. Phys. Lett., vol. 87, pp. 181107, 2005.
[13] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, et al. “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” Technol. Lett., vol. 18, pp. 274, 2006.
[14] K. M. Uang, S. J. Wang, S. L. Chen, C. M. Chen, B. W. Liou, “The use of transparent indium–zinc oxide/(oxidized-Ni/Au) ohmic contact to GaN-based light-emitting diodes for light output improvement,” Thin Solid Films, vol. 55, pp. 2501-2506, 2006.
[15] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, et al. “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electron, vol. 47, pp. 849-853, 2003.
[16] Y. C. Lin, S.J. Chang, Y. K. Su, C. S. Chang, S. C. Shei,J. C. Ke, H. M. Lo, S. C. Chen, and C. W. Kuo, “High power nitride based light emitting diodes with Ni/ITO p-type contacts,” Solid-State Electronics, vol. 47, pp. 1565-1568, 2003.
[17] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, et al., “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact,” Technol. Lett., vol. 16, pp. 1002, 2004.
[18] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, et al., “Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer,” Electrochem. Solid State Lett., vol. 11, pp. 269, 2008.
[19] J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, Navamathavan R, et al., “Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 85, no.25, pp. 6191-6193, 2004.
[20] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, et al., “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Mater Sci Eng.: B, vol. 106, pp 69-72, 2004.
[21] V. M. Bermudez, D. D. Koleske, A E. Wickenden, “The dependence of the structure and electronic properties of wurtzite GaN surfaces on the method of preparation,” Appl. Surf. Sci., vol. 126, pp. 69-72, 1998.
[22] H. W. Jang, S. Y. Kim, J. L. Lee, “Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN,” J. Appl. Phys., vol. 94, no. 3, pp. 1748-1752, 2003.
[23] J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, T. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett., vol. 76, pp. 415, 2000.
[24] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. D. Via, B. D. White, S. T. Bradley, et al., “Effects of deep-level defects on ohmic contact and frequency performance of AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 83, pp. 485, 2003.
[25] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kuo, et al., “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett., vol. 22, pp. 460, 2001.
[26] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu and G. C. Chi, “Enhanced Light Output of GaN-Based Power LEDs With Transparent Al-Doped ZnO Current Spreading Layer,” IEEE Photon. Tech. Lett., vol. 18, pp. 274, 2006.
[27] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, pp. 263511, 2007.
[28] J. O. Song, K. K. Kim, S. J. Park and T. Y. Seong, “Highly low resistance and transparent NiÕZnO ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 83, pp. 479, 2003.
[29] S. P. Jung, D. Ullery, C. H. Lin, H. P. Lee, J. H. Lim, D. K. Hwang, J. Y. Kim, E. J. Yang and S. J. Park, “High-performance GaN-based light-emitting diode using high-transparency Ni/Au/Al-doped ZnO composite contacts,” Appl. Phys. Lett., vol. 87, pp. 181107, 2005.
[30] J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan and S. J. Park, “Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 85, pp. 6191, 2004.
[31] K. Nakahara, K. Tamura, M. Sakai, D. Dakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada and S. Niki, “Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes,” Jpn. J. Appl. Phys. Lett. vol. 43, pp. L180, 2004.
[32] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu and G. C. Chi, “Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer,” Electrochem. Solid State Lett., vol. 11, pp. H269, 2008.
[33] T. Minami, T. Yamamoto, and T. Miyata, “Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 366, no. 1, p. 63, May 2000.
[34] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev. vol. 93, p. 632, 1954.
[35] S. S. Lin, J. L. Huang, and P. Sajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere,” Surf. Coat. Technol., vol. 185, no. 2/3, pp. 254–263, Jul. 2004.

Reference in Chapter 5
[1] T. Mukai, M. Yamada and S. Nakamura, “Characteristics of InGaN-based UV/Blue/Green/Amber/Red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976-3981, 1999.
[2] T. Mukai, M. Yamada and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/Blue/Green light-emitting diodes,” Jpn. J. Appl. Phys., vol. 37, pp. L1358-L1361, 1998.
[3] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodesvia surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
[4] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Tech. Lett., vol. 18, pp. 1512-1514, 2006.
[5] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Tran. Electron. Dev., vol. 52, pp.2346-2349, 2005.
[6] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, pp. 113505, 2006.
[7] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photon. Tech. Lett., vol. 16, pp. 1002-1004, 2004.
[8] C. H Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Materials Science and Engineering B, vol. 106, pp. 69-72, 2004.
[9] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-Doped ZnO current spreading layer,” IEEE Photon. Tech. Lett., vol. 18, pp. 274-276, 2006.
[10] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side walls,” IEEE Photon. Tech. Lett., vol. 16, pp. 750-752, 2004.
[11] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett., vol. 74, pp. 2256-2258, 1999.
[12] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang and Y. Z. Chiou, “Nitride-based light emitting diodes with textured sidewalls and pillar waveguides,” IEEE Photon. Tech. Lett., vol. 18, pp. 2517-2519, 2006.
[13] Hung-Wen Huang, C. F. Lai, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, R. J. Tsai, and C. C. Yub, “Efficiency enhancement of GaN-based power-chip LEDs with sidewall roughness by natural lithography,” Electrochemical and Solid-State Letters, vol. 10, pp. H59-H62, 2007.
[14] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, Art. No. 071118-1-071118-3, 2009.
[15] M. L. Wu, Y. C. Lee, S. P. Yang, P. S. Lee, and J. Y. Chang, “Azimuthally isotropic irradiance of GaN-based light-emitting diodes with GaN microlens arrays,” Opt. Express vol. 17, pp. 6148-6155, 2009.
[16] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
[17] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, “Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers,” IEEE Photon. Technol. Lett., vol. 16, pp. 1447-1449, 2004.
[18] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, Art. No. 113505-1-113505-3, 2006.
[19] R. H. Horng, X. Zheng, C. Y. Hsieh and D. S. Wuu, “Light extraction enhancement of InGaN light-emitting diode by roughening both undoped micropillar-structure GaN and p-GaN as well as employing an omnidirectional reflector,” Appl. Phys. Lett., vol. 93, Art. no. 021125, 2008.
[20] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol.18, pp.1512-1514, 2006.
[21] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hsueh, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnol., vol. 16, pp. 1844-1848, 2005.
[22] C. H. Kuo, C. M. Chen, C. W. Kuo, C. J. Tun, C. J. Pan, B. J. Pong and G. C. Chi, “Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers,” Appl. Phys. Lett., vol. 89, Art. no. 201104, 2006.
[23] M. K. Lee, C. L. Ho, and P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase deposited ZnO rods,” IEEE Photon. Technol. Lett., vol. 20 pp. 252-254, 2008.
[24] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett., vol. 90, Art. No. 203515-1-203515-3, 2007.
[25] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett., vol. 92, Art. No. 121108-1 -121108-3, 2008.
[26] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact,” IEEE Photon. Technol. Lett., vol. 16, pp. 1002-1004, 2004.
[27] L. C. Lew Yan Voon, Y. Zhang, B. Lassen, M.Willatzen, Q. Xiong and P. C. Eklund, “Electronic properties of semiconductor nanowires,” J. Nanosci. Nanotechnol., vol. 8, pp. 1-26, 2008.
[28] C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao, and S. Y. Chen, “Enhancement of Light Output Intensity by Integrating ZnO Nanorod Arrays on GaN-Based LLO Vertical LEDs,” Electrochem. Solid-State Lett., vol. 11 no. 4, pp. H84-H87, 2008.
[29] K. Kusakabe, A. Kikuch and K. Kishino, “Characterization of overgrown GaN layers on nano-columns grown by RF-molecular beam epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L192-L194, 2001.
[30] J. C. Song, S. H. Lee, I..H. Lee, K. W. Seol, S. Kannappan and C. R. Lee, “Characteristics comparison between GaN epilayers grown on patterned and unpatterned sapphire substrate (0001),” J. Crystal Growth, vol. 308, pp. 321-324, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw