進階搜尋


 
系統識別號 U0026-2308201318412500
論文名稱(中文) 負極溫度與驅動電流對中功率RGB LED特性影響之研究
論文名稱(英文) A study of the effect of cathode temperature and forward currents on the characteristics of middle power RGB LED
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 101
學期 2
出版年 102
研究生(中文) 張順裕
研究生(英文) Shun-Yu Chang
學號 N97001201
學位類別 碩士
語文別 中文
論文頁數 151頁
口試委員 指導教授-周榮華
口試委員-趙隆山
口試委員-黎靖
中文關鍵字 發光二極體  搭配螢光粉之發光二極體  脈寬調變  連續式直流減少 
英文關鍵字 Light-emitting diodes (LEDs)  phosphor-converted LED (pc-LED)  pulse-width modulation (PWM)  continuous current reduction (CCR) 
學科別分類
中文摘要 本論文利用負極溫度、驅動電流和負載指標等三個變因來探討不同顏色LED的特性變化, LED分為晶片架構LED和藍光晶片搭配高濃度螢光粉架構LED。實驗第一部份以不同負極溫度與驅動電流來探討各LED之特性,驅動電流由130mA變化到650mA,負極溫度由30℃變化到70℃,探討之LED特性有光通量、發光效率、主波長、峰波長、半高寬、色度座標、驅動電壓與功率轉換效率,環境溫度控制在25±1℃;實驗第二部份是在固定負極溫度(30 ± 0.3 ℃)條件下,探討各LED在不同負載指標之特性變化,包含發光效率與峰波長,負載指標為驅動電流倍率與負載週期之乘積。
經由實驗數據分析後,得到以下結論,高濃度螢光粉架構LED在LED發光頻譜特徵參數受負極溫度與驅動電流造成的變化,都比晶片架構LED變化來的小;隨著負極溫度的上升,藍色晶片架構LED在光學特性表現上,穩定度最高,最差的為紅色晶片架構LED;隨著驅動電流的增加,紅色晶片架構LED光學特性最佳,其主要原因可能為紅色晶片為垂直電極架構,且與此顆晶片平均驅動電流規格為250mA有關;綠色高濃度螢光粉架構LED發光效率遠高於晶片架構LED之發光效率,即使是在負極溫度70 ℃、驅動電流130mA之條件下仍約有1.8倍的增益,但紅色高濃度螢光粉架構LED發光效率遠低於紅色晶片架構LED;綠色與藍色晶片架構LED以不同驅動方式(連續式直流減少與脈寬調變),其峰波長變化為相反方向變化;而當負載週期增加時,藍色與綠色晶片架構LED會產生因接點溫度造成的紅位移;隨著驅動電流與負載週期的增加,紅色晶片架構LED會產生因接點熱造成的紅位移;所有的LED在相同負載指標條件下,連續式直流減少之驅動方法發光效率都會比較高。
英文摘要 In this thesis, the characteristics of colored LEDs are studied in two parts. The colored LEDs include R, G, B chip LEDs and high concentrateion pc-LEDs. The first part of this study is to examine the characteristics of colored LEDs under the conditions of different cathode temperatures and forward currents. The forward current varies from 130 to 650mA and the cathode temperature varies from 30℃ to 70℃. The characteristics examined include the luminous flux and efficiency, dominant wavelength, peak wavelength, full width at half amplitude, chromaticity, forward voltage, and power efficiency. The ambient temperature is within the range of 25±1℃ for all the experiments. The second part is to study the characteristics of colored LEDs under the conditions of different loading indexes. The loading indexes are the product of current rating ratio and duty cycle .The characteristics examined include the luminous efficacy and peak wavelength. The cathode temperature is within the range of 30 ± 0.3 ℃ for all the experiments.
After analyzing the experimental data, the key results are as follows. When the cathode temperature and forward current increase, the spectrum variation of high concentration phosphor LEDs is smaller than that of LEDs of chip. With increasing cathode temperature, the optical performance of red chip LEDs are the worst and blue chip LEDs are best. With increasing forward current, the LEDs of red chip have the best optical performances. The main reasons may be the difference of electrode structure and the specification of typical forward current. When the cathode temperature is 70℃ and forward current is 130mA, the luminous efficiency of high concentration pc-green LEDs is better than that of LEDs of green chip by about 1.8 times. The luminous efficiency of high concentration pc-red LEDs is much lower than that of LEDs of red chips. For the blue and green chip LED, the peak wavelength shifts of CCR and PWM dimming scheme are in opposite directions. When the level of loading index increases, the blue and green chip LEDs exhibit red shifts due to junction heat. The LEDs of red chips show red shifts which is caused by junction heat with increased current or duty cycle. At the same level of loading index, the luminous efficiency of all LEDs is always higher for the CCR dimming scheme.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 7
1-3 文獻回顧 10
1-4 研究目的 16
第二章 基本理論分析 17
2-1 相關光度量與輻射度量 17
2-2 LED的相關特徵參數 19
2-3 1931色度座標系統 21
2-4 數學計算方法 22
第三章 實驗設備與方法 25
3-1 實驗設備 25
3-1-1 INSTRUMENT SYSTEMS ISP250 積分球 25
3-1-2 INSTRUMENT SYSTEMS CAS140CT 陣列式光譜儀 26
3-1-3 Keithley 2420 多功能電表 27
3-1-4 Wise Life Technology TEC溫控模組 28
3-1-5 Yokogawa MV112 溫度量測儀器 28
3-1-6 Omega TT-T-36 熱耦線 28
3-2 中功率LED介紹 29
3-2-1 封裝結構介紹 29
3-2-2 晶片特徵介紹 29
3-2-3 螢光粉頻譜特徵介紹 30
3-3 實驗步驟 31
3-4 實驗架構 33
第四章 結果與討論 34
4-1 負極溫度及驅動電流對LED特性之影響 35
4-1-1 發光二極體光學特性量測結果 35
4-1-1-1 光通量(Luminous flux, Φv)與負極溫度 36
4-1-1-2 光通量(Luminous flux, Φv)與驅動電流 41
4-1-1-3 主波長(Dominant wavelength, Wd)與負極溫度 46
4-1-1-4 主波長(Dominant wavelength, Wd)與驅動電流 52
4-1-1-5 峰波長(Peak wavelength, Wp)與負極溫度 57
4-1-1-6 峰波長(Peak wavelength, Wp)與驅動電流 63
4-1-1-7 半高寬(FWHM)與負極溫度 68
4-1-1-8 半高寬(FWHM)與驅動電流 74
4-1-1-9 色度座標(x,y)與負極溫度 79
4-1-1-10 色度座標(x,y)與驅動電流 83
4-1-1-11 輻射通量(Radiant flux, Φe)與負極溫度 87
4-1-1-12 輻射通量(Radiant flux, Φe)與驅動電流 92
4-1-2 發光二極體電氣特性量測結果 98
4-1-2-1 驅動電壓(Vf)與負極溫度 98
4-1-2-2 驅動電壓(Vf)與驅動電流 103
4-1-3 發光二極體效率特性量測結果 108
4-1-3-1 發光效率(Luminous efficiency, η)與負極溫度 109
4-1-3-2 發光效率(Luminous efficiency, η)與驅動電流 114
4-1-3-3 功率轉換效率(Power efficiency, ηp)與負極溫度 119
4-1-3-4 功率轉換效率(Power efficiency, ηp)與驅動電流 125
4-2 負載指標對LED特性之影響 130
4-2-1 峰波長(Peak wavelength, Wp)與負載指標 130
4-2-2 發光效率(Luminous efficiency, η)與負載指標 136
4-3 負極溫度及驅動電流對螢光粉激發效率之影響 142
4-4 實驗結果 144
第五章 結論與未來展望 146
5-1 結論 146
5-2 未來研究方向 147
參考文獻 148
參考文獻 [1] 邱昰芳, “2013年顯示器面板業景氣趨勢調查報告”,台灣經濟研究院產經資料庫,代碼19704,2012
[2] http://www.apple.com/tw/iphone/compare-iphones/
[3] http://www.apple.com/tw/ipad/compare/
[4] http://www.energystar.gov/products/specs/system/files/tv_vcr_prog_req_V3.0_0.pdf
[5] http://www.energystar.gov/products/specs/system/files/Televisions_Program_Requirements%20v4_2.pdf
[6] http://www.energystar.gov/products/specs/system/files/Televisions_Program_Requirements_V5_3.pdf
[7] http://www.energystar.gov/products/specs/system/files/Final%20Version%206%200%20TV%20Program%20Requirements.pdf
[8] N. Koma, T. Miyashita, T. Uchida, and N. Mitani, “Color Field Sequential LCD Using an OCB-TFT-LCD,” SID, pp. 632-635, 2000
[9] F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Color Sequential LCD Based on OCB with an LED Backlight ,” SID, pp. 1180-1183, 2000
[10] J. J. Yoo, J. H. Woo, H. H. Shin, and C. R. Seo, “Side Light Type Field Sequential Color LCD Using Divided Light Guide Plates,” IDRC, pp. 180-183, 2003
[11] M. Mori, “Mechanism of Color Breakup on Field-Sequential Color Projectors,” SID, pp. 350-353, 1999
[12] M. Ogata, K. Ukai, and T. Kawai, “Visual fatigue in congenital nystagmus caused by viewing images of color sequential projectors,” J. Display Tech., Vol. 1, No. 2, pp. 314-320, 2005
[13] J. Lee, T. Jun, J. Lee, J. Han, and J. H. Souk, “Noble measurement method for color breakup artifact in FPDs,” IMID/IDMC, pp. 92-97, 2006
[14] 邱昰芳, “大尺寸TFT-LCD面板製造業基本資料”,台灣經濟研究院產經資料庫,代碼19849,2012
[15] http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl-rd-roundtable-report_dec12.pdf
[16] http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/HB/Data%20Sheets/CLM4BBKWGKW995.pdf
[17] http://www.nichia.co.jp/specification/en/product/led/NESG064-E.pdf
[18] http://catalog.osram-os.com/catalogue/catalogue.do?favOid=000000000001ff1600080023&act=showBookmark
[19] http://webbuilder3.asiannet.com/2278/comm/upfile/p_101014_03367.pdf
[20] http://semileds.com/system/files/SLLP-5630-150-G.pdf
[21] Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett., vol. 95, no. 1, pp. 011116-1–011116-3, 2009.
[22] H. Zhao, G. Lin, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light emitting diodes with large overlap quantum wells,” Opt. Express, vol. 19, no. S4, pp. A991–A1001, 2011
[23] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 106, no. 11, pp. 114508-1–114508-4, 2009
[24] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho et al., “Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 97, no. 10, pp. 133507-1–133507-3, 2010
[25] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light emitting diodes,” Appl. Phys. Lett., vol. 98, no. 16, pp. 161107-1– 161107-3, 2011
[26] Y. Gu, N. Narendran, T. Dong, H. Wu, “Spectral and Luminous Efficacy Change of High-power LEDs Under Different Dimming Methods,” in Proceeding of SPIE, pp. 1-7, 2006
[27] S. Nakamura, “The role of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281, 956-961, 1998
[28] T. Mukai, M. Yamada, and S. Nakamura, “InGaN-based UV/blue/green/amber/red LEDs,” SPIE Proceedings 3621, pp. 2-13, 1999
[29] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年
[30] 宋曉芳,白光發光二極體的發光光譜穩定性之研究,國立台灣科技大學電子工程系碩士論文,中華民國九十八年
[31] P. G. Eliseev, P. Perlin, J. Lee, M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Applied Physics Letters, vol. 71, pp. 569-571, 1997
[32] E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Applied Physics Letters, vol. 80, pp. 977-979, 2002
[33] R. W. Martin, P. G. Middleton, K. P. O'Donnell, W. Van der Stricht, “Exciton localization and the Stokes' shift in InGaN epilayers,” Applied Physics Letters, vol. 74, pp. 263-265, 1999
[34] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Applied Physics Letters, vol. 75, pp. 2241-2243, 1999
[35] T. Wang, J. Bai, S. Sakai, J. K. Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes,” Applied Physics Letters, vol. 78, pp. 2617-2619, 2001
[36] W. H. Lan, “Wavelength shift of gallium nitride light emitting diode with p-down structure”, IEEE Trans. Electron Devices, vol. 52, no. 6, pp.1217 -1219 2005
[37] S. Nakamura, and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, pp.318-325, CRC PRESS, 2000
[38] N. M. Rada, and G. E. Triplett, “Thermal and spectral analysis of self-heating effects in high-power LEDs,” Solid-State Electronics, Vol.54, Issue 4, Pages 378-381, 2010
[39] H. J. Jeon, G. S. Lim, and J. H. kwon,” Conversion Efficiency of RGB Phosphor Array on the Lightguide,” IDW, FMCp - 13, 2012
[40] N. T. Tran, and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes”, Journal of Lightwave Technology, Vol. 26, Issue 21, pp. 3556-3559, 2008
[41] J. P. You , N. T. Tran , Y.-C. Lin , Y. He and F. G. Shi “Phosphor- concentration-dependent characteristics of white LEDs in different current regulation modes”, J. Electron. Mater., vol. 38, no. 6, pp.761 -766, 2009
[42] 陳隆建, “發光二極體之原理與製造”,全華圖書, chpter 9, pp.4,中華民國九十九年
[43] E. Fred Schubert, “Light-Emitting Diodes Second Edition”, Cambridge University Press, Chapter 16, 2003.
[44] 郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書出版公司,台北市,中華民國一百零二年
[45] 大田登著,陳鴻興、陳詩涵編譯,色彩工程學理論與應用第2版,全華圖書,台北市,第66-73頁,中華民國九十七年
[46] http://www.instrumentsystems.com/fileadmin/editors/downloads/Products/ISP250_e.pdf
[47] http://www.instrumentsystems.tw/fileadmin/editors/downloads/Products/CAS140CT_e.pdf
[48] http://www.keithley.com.tw/data?asset=5985
[49] Wise Life Technology User's Manual for Advanced Thermoelectric Cooler Controller Rev. A
[50] http://support.us.yokogawa.com/downloads/Hardware/Recorders_&_DAQ/MV/MV100/User%20Manual/IMMV100-01E_020.pdf
[51] http://www.epistar.com.tw/_chinese/01_product/01_overview.php
[52] Merck產品規格書
[53] DENKA產品規格書
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw