進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201318213500
論文名稱(中文) 探討TGFBR3在口腔癌降低表現分子調控機轉
論文名稱(英文) Studying the molecular mechanism responsible for the down-regulation of TGFBR3 in oral cancer
校院名稱 成功大學
系所名稱(中) 分子醫學研究所
系所名稱(英) Institute of Molecular Medicine
學年度 101
學期 2
出版年 102
研究生(中文) 楊智琍
研究生(英文) Chih-Li Yang
學號 T16004019
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 指導教授-吳梨華
口試委員-張俊彥
口試委員-蔡森田
中文關鍵字 TGFBR3  口腔癌  表觀基因調控  retinoic acid 
英文關鍵字 TGFBR3  oral cancer  epigenetic regulation  retinoic acid 
學科別分類
中文摘要 口腔癌自從2007成為國人十大癌症死因的第四名之後,仍然有繼續攀升的趨勢。近年來在不同種類的癌症包含頭頸癌中發現TGFBR3有降低表現的趨勢,於是我們推測TGFBR3可能具有抑制腫瘤生長的功能。從之前的臨床實驗數據指出,口腔癌病患的腫瘤組織相較於週邊正常的組織有較低的TGFBR3表現量,而且低TGFBR3表現量有較差的癒後結果。首先使用低TGFBR3表現量的兩株口腔癌細胞株,分別處理甲基轉移酶抑制劑或組織蛋白去乙醯酶抑制劑,結果發現TGFBR3的表現量明顯的上升,所以我們猜測在口腔癌中的TGFBR3表現量降低是藉由表觀基因調控的影響。將TGFBR3啟動子上的CpG island進行in vitro methylation會大幅降低啟動子的活性,更加證實DNA甲基化會對TGFBR3啟動子有負向調控功能。MeCP2是常見會與甲基化DNA結合的蛋白質,接著我們採用chromatin immunoprecipitation 去觀察MeCP2是否會附著在TGFBR3啟動子上,實驗結果顯示在TGFBR3啟動子-365到+406有偵測到MeCP2。除此之外,我們還偵測到微弱的抑制活性的組織蛋白標誌-H3K27me3,而後經過甲基轉移酶抑制劑的處理,我們偵測不到MeCP2訊號反而是偵測到增加活性的組織蛋白標誌-H3K4me3。DNA甲基轉移酶是進行DNA甲基化的重要酵素之一,進行DNA甲基化的同時也會吸引其他蛋白分子,例如MeCP2或是組織蛋白去乙醯酶。我們發現在處理了甲基轉移酶抑制劑或組織蛋白去乙醯酶抑制劑的口腔癌細胞株中,DNMT1,DNMT3B以及HDAC6都與TGFBR3表現量成反比。除了表觀基因調控之外,位於TGFBR3啟動子-1460到-1447上的retinoic acid response element也可以參與TGFBR3降低表現的機制。雖然需要更多實驗來證明,本實驗結果指出在口腔癌中的TGFBR3降低表現不僅是受到表觀基因調控,同時也可以透過TGFBR3啟動子上的RXR/RAR binding site所調控。
英文摘要 Oral cancer with alarmingly increase in the incidence rate has become the fourth cause of male cancer-related death in Taiwan since 2007.As a co-receptor for TGF-β, transforming growth factor β receptor III (TGFBR3, also known as betaglycan) is believed to exert tumor suppressor functions due to the frequent decrease of TGFBR3 expression in several cancer types including head and neck cancer. We also detected the down-regulation of TGFBR3 in oral cancer patients and the down-regulation was associated with poor clinical outcomes among these patients. Following the treatment of low-TGFBR3 expressing CAL-27 or SCC-15 cells with a DNA methyltransferase inhibitor, 5’azaC, or histone deacetylase (HDAC) inhibitors, 4-phenylbutyrate (PBA) or suberoylanilide hydroxamic acid (SAHA), there was a significant induction of TGFBR3 mRNA expression in both the single and co-treated cells, suggesting the involvement of epigenetics in regulating TGFBR3 expression. In vitro methylation drastically reduced the luciferase activity driven by the proximal promoter harboring a putative CpG island, indicating a negative role of DNA methylation in TGFBR3 expression. Methyl CpG binding protein 2 (MeCP2) is a protein frequently bound to the methylated DNA to regulate gene expression. We then used chromatin immunoprecipitation (ChIP) to examine if MeCP2 also bound to the methylated CpG sites in the TGFBR3 promoter. We did detect the in vivo binding of MeCP2 to the promoter region between -365 and +406bp. A repressive histone marker, histone3 lysine 27 tri-methylation (H3K27me3), was weakly detected in the promoter region. Following 5’azaC treatment, there was a decreased binding of MeCP2 but an increased binding of active histone markers, acetyl histone 3 (AcH3) and histone 3 lysine 4 tri-methylation (H3K4me3), on the same promoter. DNA methyltransferases (DNMTs) are the key enzymes participating in DNA methylation. Following binding to the methylated CpG sites, DNMTs often recruit repressive complex consisting of MeCP2 or HDACs. Consistent with the notion, we detected an inverse mRNA expression of TGFBR3 with DNMT1, DNMT3B and HDAC6 mRNA in CAL-27cells treated with 5’azaC or HDAC inhibitors. In addition to the epigenetic control, a predicted RXR/RAR binding site spanning -1460 to -1447 on the TGFBR3 promoter also participates in the TGFBR3 deregulation. Although more studies are needed to delineate the detailed action mechanism, epigenetic control together with RA metabolism dysfunction participates in the deregulation of TGFBR3 expression in oral cancer cells.
論文目次 Abstract in Chinese I
Abstract in English II
Acknowledgement IV
Content VI
List of Figures and tables IX
Abbreviations X

I. Introduction 1
1-1 Oral cancer 1
1-2 TGF-β and TGFBR3 1
1-3 TGFBR3 deregulation in cancer 2
1-4 Potential mechanisms involved in TGFBR3 deregulation 2
1-5 Impaired retinoic acid pathway in cancer 3
1-6 Retinoic acid cross talk with TGF-β/TGFBR3 3
1-7 Previous lab studies on TGFBR3 deregulation in oral cancer 3
II. Hypothesis 5
III. Specific aims 6
IV. Materials and methods 7
4-1 Cell culture and patient samples 7
4-2 Drug treatment 7
4-3 Plasmid constructs 8
4-4 Luciferase promoter assay 8
4-5 in vitro methylation treatment 8
4-6 RNA isolation and semi-quantitative and quantitative RT-PCR 9
4-7 Genomic DNA extraction and bisulfite sequencing PCR 9
4-8 Methylation specific PCR 10
4-9 Chromatin immunoprecipitation (ChIP) PCR 10
4-10 Site-directed mutagenesis 11
V. Results 12
5-1 Epigenetics involved in the control of TGFBR3 deregulation in oral cancer cells 12
5-2 The proximal TGFBR3 region spanning from -366 to +174 12
5-3 The impact of CpG island and its methylation on the promoter activity of the proximal TGFBR3 region spanning from -366 to +174 13
5-4 The inverse relation of TGFBR3 mRNA expression with promoter methylation in oral cancer lines but not clinical specimens 14
5-5 Bisulfite sequencing of the region spanning putative CpGisland in the TGFBR3 promoter 15
5-6 MeCP2 and histone modification markers bind to the TGFBR3 promoter region between -365 and +406 15
5-7 Inverse expression of TGFBR3 with DNMT1 and DNMT3B in oral cancer cells following 5’azaC and/or HDAC inhibitors treatment 16
5-8 The expression of TGFBR3 and DNMT1 and DNMT3B in clinical specimens 17
5-9 HDAC6 was not involved in the TGFBR3 deregulation despite its frequent increase of expression in oral cancer cells 17
5-10 RA metabolites decreased TGFBR3 promoter activity 18
5-11 The presence of RAR/RXR binding sites in the promoter region from -1460 to -1447 19
VI. Discussion 20
VII. References 23
VIII. Appendix 55
參考文獻 1. Rodriguez CP, Adelstein DJ. Survival trends in head and neck cancer: opportunities for improving outcomes. The oncologist. 2010;15:921-3.
2. Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral oncology. 2013.
3. Li J, Liang F, Yu D, Qing H, Yang Y. Development of a 4-nitroquinoline-1-oxide model of lymph node metastasis in oral squamous cell carcinoma. Oral oncology. 2013;49:299-305.
4. Gatza CE, Oh SY, Blobe GC. Roles for the type III TGF-beta receptor in human cancer.Cellular signalling. 2010;22:1163-74.
5. Cheifetz S, Andres JL, Massague J. The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor.The Journal of biological chemistry. 1988;263:16984-91.
6. Cheifetz S, Like B, Massague J. Cellular distribution of type I and type II receptors for transforming growth factor-beta. The Journal of biological chemistry. 1986;261:9972-8.
7. Massague J, Like B. Cellular receptors for type beta transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines.The Journal of biological chemistry. 1985;260:2636-45.
8. Compton LA, Potash DA, Brown CB, Barnett JV. Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circulation research. 2007;101:784-91.
9. Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, et al. Heart and Liver Defects and Reduced Transforming Growth Factor 2 Sensitivity in Transforming Growth Factor Type III Receptor-Deficient Embryos. Molecular and Cellular Biology. 2003;23:4371-85.
10. Turley RS, Finger EC, Hempel N, How T, Fields TA, Blobe GC. The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer.Cancer research. 2007;67:1090-8.
11. Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, et al. The type III TGF-beta receptor suppresses breast cancer progression. The Journal of clinical investigation. 2007;117:206-17.
12. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease.Biochimicaetbiophysicaacta. 2008;1782:197-228.
13. Bierie B, Moses HL. TGF-beta and cancer. Cytokine & growth factor reviews. 2006;17:29-40.
14. Massague J. TGFbeta in Cancer.Cell. 2008;134:215-30.
15. Bayat A, Watson JS, Stanley JK, Ferguson MW, Ollier WE. Novel single nucleotide polymorphisms in the 3'-UTR of the TGFbetaRI and TGFbetaRIII genes. European journal of immunogenetics : official journal of the British Society for Histocompatibility and Immunogenetics. 2002;29:445-6.
16. Zippert R, Bassler A, Holmer SR, Hengstenberg C, Schunkert H. Eleven single nucleotide polymorphisms and one triple nucleotide insertion of the human TGF-beta III receptor gene. Journal of human genetics. 2000;45:250-3.
17. Pan LN, Lu J, Huang B. HDAC inhibitors: a potential new category of anti-tumor agents. Cellular & molecular immunology. 2007;4:337-43.
18. Hempel N, How T, Dong M, Murphy SK, Fields TA, Blobe GC. Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer research. 2007;67:5231-8.
19. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors.Cell. 1995;83:841-50.
20. Macejova D, Radikova Z, Macho L, Liska J, Brtko J. MNU-induced carcinogenesis of rat mammary gland: effect of thyroid hormone on expression of retinoic acid receptors in tumours of mammary gland. Molecular and cellular endocrinology. 2005;244:47-56.
21. Widschwendter M, Berger J, Daxenbichler G, Muller-Holzner E, Widschwendter A, Mayr A, et al. Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer research. 1997;57:4158-61.
22. Bergheim I, Wolfgarten E, Bollschweiler E, Holscher AH, Bode CH, Parlesak A. Role of retinoic acid receptors in squamous-cell carcinoma in human esophagus. Journal of carcinogenesis. 2005;4:20.
23. Kishi H, Kuroda E, Mishima HK, Yamashita U. Role of TGF-beta in the retinoic acid-induced inhibition of proliferation and melanin synthesis in chick retinal pigment epithelial cells in vitro. Cell biology international. 2001;25:1125-9.
24. Lopez-Casillas F, Riquelme C, Perez-Kato Y, Ponce-Castaneda MV, Osses N, Esparza-Lopez J, et al. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.The Journal of biological chemistry. 2003;278:382-90.
25. Tsai ST, Jin YT, Tsai WC, Wang ST, Lin YC, Chang MT, et al. S100A2, a potential marker for early recurrence in early-stage oral cancer. Oral oncology. 2005;41:349-57.
26. Klug M, Rehli M. Functional analysis of promoter CpG methylation using a CpG-free luciferase reporter vector. Epigenetics : official journal of the DNA Methylation Society. 2006;1:127-30.
27. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England). 2002;18:1427-31.
28. Miyake K, Hirasawa T, Soutome M, Itoh M, Goto Y, Endoh K, et al. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC neuroscience. 2011;12:81.
29. Smith LT, Otterson GA, Plass C. Unraveling the epigenetic code of cancer for therapy. Trends in genetics : TIG. 2007;23:449-56.
30. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349-52.
31. Mossman D, Scott RJ. Long term transcriptional reactivation of epigenetically silenced genes in colorectal cancer cells requires DNA hypomethylation and histone acetylation. PloS one. 2011;6:e23127.
32. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases.Annual review of biochemistry. 2005;74:481-514.
33. Pradhan S. Recombinant Human DNA (Cytosine-5) Methyltransferase. I. EXPRESSION, PURIFICATION, AND COMPARISON OF DE NOVO AND MAINTENANCE METHYLATION. Journal of Biological Chemistry. 1999;274:33002-10.
34. Milutinovic S, Brown SE, Zhuang Q, Szyf M. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. The Journal of biological chemistry. 2004;279:27915-27.
35. Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9:4415-22.
36. Nosho K, Shima K, Irahara N, Kure S, Baba Y, Kirkner GJ, et al. DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15:3663-71.
37. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nature reviews Cancer. 2001;1:194-202.
38. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends in genetics : TIG. 2003;19:286-93.
39. Chang HH, Chiang CP, Hung HC, Lin CY, Deng YT, Kuo MY. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral oncology. 2009;45:610-4.
40. Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS :actapathologica, microbiologica, et immunologicaScandinavica. 2005;113:264-8.
41. Haakenson J, Zhang X. HDAC6 and Ovarian Cancer. International journal of molecular sciences. 2013;14:9514-35.
42. Pastor V, Host L, Zwiller J, Bernabeu R. Histone deacetylase inhibition decreases preference without affecting aversion for nicotine. Journal of neurochemistry. 2011;116:636-45.
43. Jung I-K, Kim D-S. Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands. Interdisciplinary Bio Central. 2009;1:15-21.
44. Wang C, Liu X, Chen Z, Huang H, Jin Y, Kolokythas A, et al. Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Molecular carcinogenesis. 2013;52:229-36.
45. Rao ZY, Cai MY, Yang GF, He LR, Mai SJ, Hua WF, et al. EZH2 supports ovarian carcinoma cell invasion and/or metastasis via regulation of TGF-beta1 and is a predictor of outcome in ovarian carcinoma patients. Carcinogenesis. 2010;31:1576-83.
46. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624-9.
47. Raaphorst FM, Meijer CJ, Fieret E, Blokzijl T, Mommers E, Buerger H, et al. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia. 2003;5:481-8.
48. Kidani K, Osaki M, Tamura T, Yamaga K, Shomori K, Ryoke K, et al. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral oncology. 2009;45:39-46.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw