進階搜尋


下載電子全文  
系統識別號 U0026-2308201220402700
論文名稱(中文) 離子、電子溫度同步量測系統:離子感應蘭摩爾探針之研發,及其電漿擾動研究的應用
論文名稱(英文) Development of Katsumata-Langmuir probe for simultaneous measurement of ion and electron temperature, it's application to plasma turbulence study
校院名稱 成功大學
系所名稱(中) 太空天文與電漿科學研究所
系所名稱(英) Assistant, Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
學年度 100
學期 2
出版年 101
研究生(中文) 謝東原
研究生(英文) Tung-Yuan Hsieh
學號 la6991112
學位類別 碩士
語文別 英文
論文頁數 82頁
口試委員 指導教授-河森榮一郎
口試委員-陳秋榮
口試委員-西田靖
口試委員-西村泰太郎
中文關鍵字 離子溫度  離子感應探針  磁化電漿 
英文關鍵字 ion temperature  ion-sensitive probe  magnetized plasma 
學科別分類
中文摘要 於本研究中,我們開發出一具可在磁化電漿實驗(MPX)中量測離子溫度之空間分佈的新型「離子感應蘭摩爾探針」。此新型探針同時亦具備了電子溫度、電漿密度、電漿電位同步量測之能力。在眾多的磁化電漿實驗中,我們可以發現傳統的離子感應型探針並不能有效的阻隔電子並獲取純粹的離子電流。這也是此類探針存在已久、尚待解決的議題。我們設計的新型離子感應探針給予了這個議題一個最佳的解決方案,這個進展亦賦予我們更多的能力來執行與離子溫度梯度、電子溫度梯度相關之離子及電子尺度的電漿擾動的研究。
在研發過程的第一階段,我們建構出了一個可用來設計探針結構的二微粒子運動的模擬程式。這個程式提供我們更多的彈性去構築一個理想的探針結構。在實驗中我們證實了傳統型的離子感應型探針並不能有效的排除電子並對離子溫度的估計造成不可忽略的誤差。然而,標準的離子感應探針模型並無法對這個現象的成因提供適當的解釋。經過反覆的嘗試及理論的推敲後,我們得到一個合理的解釋並想出一個新的設計去解決這個問題。此設計可有效的降低在探針感應區中所發生的空間電荷效應所造成的影響。
最後,我們在電子迴旋共振電漿實驗中使用了這個新型探針和蘭摩爾探針陣列去辨識在磁化電漿中的不穩定性質。經由量測出的徑向電漿參數分佈及探針陣列的擾動訊號分析中,我們測出在磁化電漿裡其中的一種不穩定性為同時具備極向模數m = 1、m = 2 的「交換模不穩定性」。
英文摘要 I developed a new type of Katsumata-Langmuir probe (KLP) to measure spatial profile of ion temperature of MPX plasmas. Also, KLP is equipped with the ability of simultaneous measurement of plasma parameters including electron temperature, plasma density and space potential. The KLP resolves a longstanding issue widely observed in KLP type probe measurements, that current-voltage characteristic is smeared by unexpected electron current. This progress enables us to experimentally study ion and electron scale turbulences associated with ion temperature gradient (ITG) mode and electron temperature gradient (ETG) mode in MPX.
At first phase of development, I applied a KLP, which is a conventional type,to MPX experiments. I developed a two-dimensional (2-D) particle simulation code to design the sensor configuration of the KLP. The KLP could not obtain correct ion temperature because of the unexpected electron current. This result can not be explained by the standard ion-sensitive probe model. After many twists and turns, we figured out the new configuration for KLP. This design takes space charge effect into consideration. The modified KLP successfully achieved the simultaneous measurements of perpendicular ion temperature, electron temperature, ion density and space potential.
Finally, I applied the new KLP and Langmuir probe array (LPA) to electron cyclotron resonance (ECR) plasma to identify instabilities excited in the ECR plasma. The measurement of radial profile of the plasma parameters and analysis of the fluctuation signals measured by LPA lead to a conclusion that one of the measured fluctuations having poloidal mode m = 1 and m = 2 was the flute mode.
論文目次 摘要………………………………………………………………………………….1
Abstract……………………………………………………………...……………....2
致謝………………………………………………………………………………….3
Content………………………………………………………………………………4
List of Tables………………………………………………………………………...7
List of Figures……………………………………………………………………….8
Chapter 1 Introduction……………………………………………………………..12
1.1 Turbulence study in Fusion Plasma…………………………………….12
1.2 Present status of ITG and ETG drift wave turbulence research………..13
1.3 Introduction of the diagnostic methods of ion temperature…………….14
1.4 Purpose of this research………………………………………………...16
Chapter 2 Magnetized Plasma eXperiment (MPX) Device………………………..17
2.1 Vacuum chamber and pumping system…………………………………18
2.2 Magnet system………………………………………………………….18
2.3 Hot-cathode mode plasma………………………………………………19
2.4 Electron cyclotron resonance (ECR) mode plasma…………………….19
Chapter 3 Design of Katsumata type Langmuir probe (KLP) by use of particle simulation…………………………………………………………………………..21
3.1 Review of the principle of KLP measurement……………………….…21
3.2 Two-dimensional particle simulation for the design of KLP sensor head…………………………………………………………………………24
3.3 Validity check of simulation code………………………………………31
3.4 Simulation result for an appropriate sensor configuration design……...34
3.5 Summary of simulation work…………………………………………...41
Chapter 4 Development of Katsumata-Langmuir probe (KLP) system…………...42
4.1 Design of detection circuit of measurement system……………………42
4.2 Sensor head design for an adjustable collector and exposed area of guard electrode…………………………………………………………………….45
4.3 Current Voltage converter………………………………………………46
4.4 Isolation amplifier………………………………………………………46
4.5 Data acquisition (DAQ) system………………………………………...46
4.6 Validity check of detection circuit……………………………………...47
4.7 Summary of detection circuit development…………………………….50
Chapter 5 Application of Katsumata-Langmuir probe to MPX……………………51
5.1 Experimental setup of KLP system and the MPX device………………51
5.2 First test of KLP in the MPX…………………………………………...52
5.2.1 Effect of potential difference between collector and guard electrode on electron dynamics……………………………………………………...54
5.2.2 Space charge effect in KLP sensor volume…………………………59
5.3 New design of KLP sensor head………………………………………..61
5.4 Plasma parameters measured by newly designed Katsumata-Langmuir probe………………………………………………………………………...62
5.5 Summary of Ch. 5………………………………………………………65
Chapter 6 Experimental identification of instabilities in ECR mode plasma……...66
6.1 Experimental setup of poloidal LPA and KLP for turbulence analysis…66
6.2 Observation of low frequency fluctuations in the ECR plasma………...67
6.3 Discussion………………………………………………………………72
6.4 Summary of Ch. 6………………………………………………………78
Chapter 7 Summary....……………………………………………………………...79
Refference………………………………………………………………………….81
參考文獻 [1] J. Chen and A. K. Sen., Phys. Rev. Lett. 72, 3997 (1994)
[2] Y. Idomura., Nucl. Fusion 43, 234-243 (2007)
[3] Itoh S. –I. and Itoh K., Phys. Rev. Lett. 60 2276 (1998)
[4] Itoh K., Itoh S. –I., Yagi M. and Fukuyama A. Phys. Plasmas 5 4121 (1998)
[5] G. Rewoldt et al., PoP 3, 1667 (1996)
[6] S. M. Kay, Nucl. Fusion 47, 499-509 (2007)
[7] J. Q. Li and Y. Kishimoto., Phys. Rev. Lett. 89, 115002 (2002)
[8] I. Katsumata and M. Okazaki., Jpn. J. Appl. Phys. 6, pp. 123-124 (1967)
[9] I. Katsumata, Contributions to Plasma Physics 36, 73 (1996)
[10] R. P. da Silva et al, Rev. Sci. Instrum. 57, 2205 (1986)
[11] J. Adamek et al, Czechoslovak J. Phys. 54, C95-C99 (2004)
[12] M. Kocan et al, 32nd EPS conference on plasma phys. Tarragona, ECA Vol. 29C, P-2.082 (2005)
[13]http://graphics.cs.ucdavis.edu/~joy/ecs277/other-notes/Numerical-Methods-for-Particle-Tracing-in-Vector-Fields.pdf
[14]http://ocw.usu.edu/Civil_and_Environmental_Engineering/Numerical_Methods_in_Civil_Engineering/LaplaceDirichletTemperature.pdf
[15]http://dspace.mit.edu/bitstream/handle/1721.1/54465/554702791.pdf?sequence=1
[16] N. Ezumi et al, J. Nucl. Mat. 337-339, 1106-1110 (2005)
[17] K. Uehara, J. Phys. Soc. Jpn. 66 (1997)
[18]http://www.psfc.mit.edu/research/alcator/pubs/PSI/psi20/Sullivan_PSI_2012_poster.pdf
[19]http://www.psfc.mit.edu/research/alcator/pubs/APS/APS2009/ochoukov_aps2009ver4.pdf
[20] N. Ezumi, Contributions to Plasma Physics 41, 488 (2001)
[21] K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (2000)
[22] T. Antonsen et al, Nuclear Fusion, Vol. 19, No. 5 (1979)
[23] B. Coppi et al, The Physics of Fluids, Vol. 10, 582 (1967)
[24] K. Kamataki et al, J. Phys. Soc. Jpn. Vol. 76, No. 5 (2007)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw