進階搜尋


 
系統識別號 U0026-2308201213520600
論文名稱(中文) 一種免標記和靈敏的方法以電旋轉圖譜快速辨識癌細胞
論文名稱(英文) A label-free and sensitive method for rapid discrimination of cancer cell based on electrorotation (ROT) spectroscopy
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 蔡孟晏
研究生(英文) Meng-Yen Tsai
學號 P86991119
學位類別 碩士
語文別 英文
論文頁數 44頁
口試委員 口試委員-湯銘哲
口試委員-蘇五洲
口試委員-沈孟儒
口試委員-莊漢聲
指導教授-張憲彰
中文關鍵字 電旋轉  介電泳  免生物標記  肺癌細胞  IL-6  P6  Stat3 
英文關鍵字 electrorotation  dielectrophoresis  label-free  lung cancer cell  IL-6 (Interleukin 6)  P6  Stat3 
學科別分類
中文摘要 一般來說,傳統的癌症評估技術需使用大型的專業儀器或受過訓練的專業人員,以西方點墨法和酵素免疫分析法為例則需高成本和長時間等待的眾多缺點。本研究提出以結合介電泳與電旋轉運用於鑑別基因轉殖肺癌細胞與藥敏實驗,藉以實現一種免生物標記、快速檢測、靈敏度高的方法。其中介電泳操控癌細胞至檢測區域,隨後可藉由施加 3D立體旋轉電場辨別基因轉殖的肺癌細胞(AS2、S3C和S3D)。
在實驗結果中可得知於施加電壓 9 Vpp和最佳頻率 100 kHz的情況下,鑑別基轉肺癌細胞是藉由其旋轉速度的不同來達成。 S3C細胞是轉染持續活化之Stat3轉錄因子使S3C細胞表現出比未基因轉殖AS2細胞明顯的高轉速。 相較之下,S3D細胞是轉染抑制的Stat3轉錄因子使未基因轉殖AS2細胞轉速快於S3D細胞。此方法也被運用於評估肺癌AS2細胞對於藥物敏感程度的實驗,藥物分別為IL-6 (促進AS2惡化程度) 和P6 (抑制AS2惡化程度)。當分別施加IL-6和P6於 6小時和0.5小時,檢測細胞轉速會有明顯的改變。此結果以電旋轉執行是比以傳統西方點墨法有更好的一致性。
英文摘要 Conventional techniques for estimation of cancer cell use huge instruments, Western blot, and ELISA kits that are high cost and long time consuming. This study reports a label-free, rapid and sensitive approach that combines dielectrophoresis (DEP) and electrorotation (ROT) for rapid discrimination of the transgenic lung cancer cells (AS2, S3C and S3D) and estimation of drug susceptibility test. DEP manipulate the cancer cells to detection zone, and the cells can be discriminated the difference of those transgenic lung cancer cells in a three-dimensional (3D) rotating field. The experimental results show that cancer cells with different treatments can be determined by their induced rotation speeds when applying 9 Vpp at an optimal frequency of 100 kHz. The S3C cells transfected with constitutively-activated Stat3 showed a higher rotating speed than the parental AS2 cell. In contrast, the S3D cells transfected with dominant-negative Stat3 showed a lower rotating speed than the AS2 cell. This approach was also utilized to estimate the drug susceptibility of AS2 lung cancer cell that was treated with IL-6 (the promoter of the malignant of AS2) and P6 (the inhibitor of the malignant of AS2). A distinct change occurs when the cell treated with IL-6 and P6 at the treated time of 6 and 0.5 hr, respectively. The results taken by ROT are very agreement with the conventional results taken by Western blot.
論文目次 Abstract I
中文摘要 II
誌謝 III
Contents IV
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Micro-Electro-Mechanical Systems 4
1.3 Detection and Discrimination Methods of Cancer Cell 5
1.3.1 Western Blot 6
1.3.2 ELISA 7
1.4 Electrokinetics 8
1.4.1 Dielectrophoresis (DEP) 8
1.4.2 Electrorotation (ROT) 10
1.5 Paper review of electrorotation 12
1.6 Research Framework 16
Chapter 2 Materials and Methods 18
2.1 Experimental Working Principle of Electrode Design and Simulation 18
2.2 Sample Preparation 20
2.2.1 Cell Culture 20
2.2.2 Cell Treatment and Collection 21
2.3 System Configuration 21
2.4 Micro-Fabrication 22
2.5 Analysis Method of the Experimental Results 24
Chapter 3 Results and Discussions 26
3.1 Comparison of Planar (2D) Electrorotation Chip and Three-Dimensional (3D) Electrorotation Chip 26
3.2 Comparison of Electrokinetic Discrimination Methods (Electrorotation vs. Dielectrophoresis) 29
3.3 Voltage and Frequency for Rotation Speed 32
3.4 Electrorotation Spectrum of Different Cancerization Cells 33
3.5 Electrorotation Spectrum of Drug Treated Cancer Cell 37
3.6 Optimal Detection Time of Drug Treated Cancer Cell 39
Chapter 4 Conclusion 41
References 42
參考文獻 1. Yeh, H.H., et al., Autocrine IL-6-induced Stat3 Activation Contributes to the Pathogenesis of Lung Adenocarcinoma and Malignant Pleural Effusion. Oncogene, 2006. 25(31). 4300-4309.
2. Spiro, S.G., et al., One Hundred Years of Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2005. 172(5). 523-529.
3. Lin, C.-C., et al., Malignant Pleural Effusion Cells Show Aberrant Glucose Metabolism Gene Expression. European Respiratory Journal, 2011. 37(6). 1453-1465.
4. Krause, D.S., et al., Tyrosine Kinases as Targets for Cancer Therapy. New England Journal of Medicine, 2005. 353(2). 172-187.
5. Lynch, T.J., et al., Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 2004. 350(21). 2129-2139.
6. Uramoto, H., et al., Which Biomarker Predicts Benefit from EGFR-TKI Treatment for Patients with Lung Cancer? British Journal of Cancer, 2007. 96(6). 857-863.
7. Cheng, I.-F., et al., An Integrated Dielectrophoretic Chip for Continuous Bioparticle Filtering, Focusing, Sorting, Trapping, and Detecting. Biomicrofluidics, 2007. 1(2). 021503.
8. Chung, C.-C., et al., Antibiotic Susceptibility Test Based on the Dielectrophoretic Behavior of Elongated Escherichia Coli with Cephalexin Treatment. Biomicrofluidics, 2011. 5(2). 021102.
9. Chen, J., et al., Microfluidic Approaches for Cancer Cell Detection, Characterization, and Separation. Lab on a Chip, 2012. 12(10). 1753-1767.
10. Pohl, H.A., Dielectrophoresis 1978, UK: Cambridge University Press.
11. Pethig, R., Dielectric and Electronic Properties of Biological Materials 1979, Chichester, UK: John Wiley and Sons.
12. Arnold, W.M., et al., Rotating-Field-Induced Rotation and Measurement of the Membrane Capacitance of Single Mesophyll-Cells of Avena-Sativa. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 1982. 37(10). 908-915.
13. Mischel, M., et al., Cellular Spin Resonance in Rotating Electric Fields. Journal of Biological Physics, 1982. 10(4). 223-226.
14. Pethig, R., et al., Dielectrophoretic Studies of the Activation of Human T Lymphocytes Using a Newly Developed Cell Profiling System. Electrophoresis, 2002. 23(13). 2057-2063.
15. Basuray, S., et al., Designing a Sensitive and Quantifiable Nanocolloid Assay with Dielectrophoretic Crossover Frequencies. Biomicrofluidics, 2010. 4(1). 013205.
16. Pethig, R., et al., Cell Physiometry Tools Based on Dielectrophoresis. Journal of the Association for Laboratory Automation, 2004. 9(5). 324-330.
17. Cristofanilli, M., et al., Automated Electrorotation to Reveal Dielectric Variations Related to HER-2/neu Overexpression in MCF-7 Sublines. Clinical Cancer Research, 2002. 8(2). 615-619.
18. Gascoyne, P.R.C., et al., Numerical-Analysis of the Influence of Experimental Conditions on the Accuracy of Dielectric Parameters Derived from Electrorotation Measurements. Bioelectrochemistry and Bioenergetics, 1995. 36(2). 115-125.
19. Zhou, X.F., et al., Differentiation of Viable and Nonviable Bacterial Biofilms Using Electrorotation. Biochimica Et Biophysica Acta-General Subjects, 1995. 1245(1). 85-93.
20. Dalton, C., et al., Viability of Giardia Intestinalis Cysts and Viability and Sporulation State of Cyclospora Cayetanensis Oocysts Determined by Electrorotation. Applied and Environmental Microbiology, 2001. 67(2). 586-590.
21. Dalton, C., et al., Fertilization State of Ascaris Suum Determined by Electrorotation. Journal of Helminthology, 2006. 80(1). 25-31.
22. Dalton, C., et al., Analysis of Parasites by Electrorotation. Journal of Applied Microbiology, 2004. 96(1). 24-32.
23. Falokun, C.D., et al., Electrorotation of Beads of Immobilized Cells. Journal of Electrostatics, 2007. 65(7). 475-482.
24. Lei, U., et al., Review of the Theory of Generalised Dielectrophoresis. Iet Nanobiotechnology, 2011. 5(3). 86-106.
25. Wang, X.B., et al., Theoretical and Experimental Investigations of the Interdependence of the Dielectric, Dielectrophoretic and Electrorotational Behavior of Colloidal Particles. Journal of Physics D-Applied Physics, 1993. 26(2). 312-322.
26. Jones, T.B., Basic Theory of Dielectrophoresis and Electrorotation. IEEE Engineering in Medicine and Biology Magazine, 2003. 22(6). 33-42.
27. Sancho, M., et al., Interaction Between Cells in Dielectrophoresis and Electrorotation Experiments. Biomicrofluidics, 2010. 4(2). 022802.
28. Ying, H., et al., Differences in the AC Electrodynamics of Viable and Nonviable Yeast-Cells Determined Through Combined Dielectrophoresis and Electrorotation Studies. Physics in Medicine and Biology, 1992. 37(7). 1499-1517.
29. Yu, H., et al., The STATs of Cancer New Molecular Targets Come of Age. Nat Rev Cancer, 2004. 4(2). 97-105.
30. Huang, W.L., et al., Signal Transducer and Activator of Transcription 3 Activation Up-regulates Interleukin-6 Autocrine Production: a Biochemical and Genetic Study of Established Cancer Cell Lines and Clinical Isolated Human Cancer Cells. Molecular Cancer, 2010. 9(1). 309-325.
31. Xiao, H., 半導體製程技術導論2010: 學銘圖書有限公司、歐亞圖書有限公司.
32. Burnette, W.N., “Western Blotting”: Electrophoretic Transfer of Proteins from Sodium Dodecyl Sulfate-polyacrylamide Gels to Unmodified Nitrocellulose and Radiographic Detection with Antibody and Radioiodinated Protein A. Analytical Biochemistry, 1981. 112(2). 195-203.
33. Yalow, R.S., et al., Immunoassay of Endogenous Plasma Insulin in Man. The Journal of Clinical Investigation, 1960. 39(7). 1157-1175.
34. Hughes, M.P., et al., Computer-Aided Analyses of Electric-Fields Used in Electrorotation Studies. Journal of Physics D-Applied Physics, 1994. 27(7). 1564-1570.
35. Dalton, C., et al., Parasite Viability by Electrorotation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 195(1-3). 263-268.
36. Maier, H., Electrorotation of Colloidal Particles and Cells Depends on Surface Charge. Biophysical Journal, 1997. 73(3). 1617-1626.
37. Gimsa, J., New light-scattering and Field-trapping Methods Access the Internal Electric Structure of Submicron Particles, Like Influenza Viruses. Annals of the New York Academy of Sciences, 1999, 873(1). 287-298.
38. Hodgson, C.E., et al., Determination of the Viability of Escherichia Coli at the Single Organism Level by Electrorotation. Clinical Chemistry, 1998. 44(9). 2049-2051.
39. Reichle, C., et al., A New Microsystem for Automated Electrorotation Measurements Using Laser Tweezers. Biochimica Et Biophysica Acta-Bioenergetics, 2000. 1459(1). 218-229.
40. Egger, M., et al., Electrorotation Measurements of Diamide-induced Platelet Activation Changes. Biophysical Journal, 1995. 68(1). 364-372.
41. Chan, K.L., et al., Electrorotation of Liposomes: Verification of Dielectric Multi-shell Model for Cells. Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism, 1997. 1349(2). 182-196.
42. Jones, T.B., Electromechanics of Particles 1995: Cambridge University Press.
43. Morgan, H.,et al., AC Electrokinetics: Colloids and Nanoparticles 2003, Research Studies Press.
44. Yu, H., et al., The Stats of Cancer - New Molecular Targets Come of Age. Nature Reviews Cancer, 2004. 4(2). 97-105.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw