進階搜尋


 
系統識別號 U0026-2308201209382900
論文名稱(中文) 微槽內爆震焰產生過程中震波與反應波之交互作用
論文名稱(英文) Interactions between Shock and Reaction Fronts during Detonation Initiations in Small Channels
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 邱柏淵
研究生(英文) Po-Yuan Chiu
學號 N16994065
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-吳明勳
口試委員-林大惠
口試委員-趙怡欽
口試委員-施聖洋
中文關鍵字 緩燃焰轉爆震焰機制  震波  Shadowgraph顯影 
英文關鍵字 Deflagration-to-detonation transition  Shock waves  Shadowgraph visualization 
學科別分類
中文摘要 本研究藉由Shadowgraph顯影將一透明微槽內火焰傳遞過程中反應波與震波可視化,以釐清微尺度直槽內緩燃焰轉爆震焰機制與爆震焰通過二維突擴槽後的重新引燃機制。研究中分別利用高速攝影系統與單張延遲拍攝系統得到連續之火焰傳遞序列圖以及不同時點的反應波與震波之結構。
火焰於直槽的傳遞過程中,反應波點火後初期以一拋物線型火焰面傳遞。由於傳遞過程中的氣流阻滯效應,於火花點火壓降後30~60 us在火燄面前方先形成一前導震波,其傳遞速度約為500 m/s,此震波速度不受微槽尺度影響。此前導震波對其前方未燃氣體進行預熱與預壓縮,使得火焰之燃氣質量消耗率增加,導致火焰傳遞速度提升。於火焰傳遞後期則在前導震波與反應波之間形成第二正向震波,其傳遞速度較前導震波為快,並提供進一步的預熱與預壓縮效果。在高解析度照片中可觀察到在傳遞後期於拋物線型火焰面與壁面夾角處形成的斜震波結構,並在此處發生局部爆炸,使火焰傳遞型態轉變為爆震焰。
在爆震焰通過二維突擴之重新引燃機制研究中,我們利用改變突擴比與添加不同氮氣稀釋量以觀察傳遞模態之變化。於1 mm轉3 mm的突擴槽中,在稀釋比b = 0.0 ~ 0.2條件下時,可觀察到爆震焰通過突擴後震波的繞射現象,接著從壁面形成交叉狀的震波結構,而爆震焰可經由震波反射過程重新被引燃。當提升稀釋比至b=0.3~0.5時,而震波將會在傳遞過程中消散,反應波需透過DDT過程重新回到爆震焰傳遞形式,其重新引燃距離也大幅增加。而在0.5 mm轉3 mm的突擴槽中,火焰在未添加稀釋氣體的條件下已無法利用震波反射重新回到爆震焰傳遞模式。
英文摘要 Shock-flame interaction processes during the deflagration-to-detonation transition (DDT) in a millimeter-scale channel and detonation wave transmission through a planner sudden expansion channel were successfully visualized using shadowgraph technique. During the DDT process, a leading shock wave formed in the early stage of flame acceleration process, and the speed of the leading shock is approximately 500 m/s. Due to the pre-compression and pre-heat effect of the leading shock, the flame keeps accelerates and eventually catches up the leading shock. Before DDT, a secondary shock was formed between the reaction front and the leading shock; the speed of the secondary shock is slightly higher than the leading shock. Some oblique shocks would appear in the corner between the parabolic shaped flame and the side wall right before local explosion occurs.
The transmission of detonation wave through a millimeter-scale planar sudden expansion is also visualized by shadowgraph visualization technique. Different amount of nitrogen dilution was added to change the mixture reactivity. The result shows that two different types of detonation re-initiation. The detonation wave can be re-initiated by shock wave reflection from side wall for mixture with dilution ratio between 0 to 0.2. Increase the dilution ratio and expansion ratio will result in failed re-initiation by shock reflection, and the detonation has to be triggered through DDT process, at far downstream locations in the expanded section.
論文目次 摘要 i
Abstract iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第1章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 文獻回顧 3
1-4 本文架構 7
第2章 實驗設備與方法 8
2-1 Shadowgraph顯影系統 8
2-2 點火系統 11
2-3 攝影系統 13
高速攝影 13
單張延遲拍攝 16
2-4 微槽設計 20
2-5 燃氣製備 22
電子式質流量控制器 22
孔板式質流量控制器 22
不確定性分析 24
第3章 直槽內緩燃燄轉爆震焰 26
3-1 Shadowgraph顯影 26
3 mm寬直槽 26
1 mm寬直槽 31
0.5 mm寬直槽 34
3-2 槽寬之影響 37
3-3 結果討論 43
第4章 爆震焰通過突擴後重新引燃 48
4-1 震波反射引燃 48
4-2 DDT引燃 53
4-3 結果討論 64
第5章 結論與未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 69
附錄A震波等熵壓縮計算 74
參考文獻 [1] Brailovsky, I., and Sivashinsky, G.I. (2000), Hydraulic resistance as a mechanism for deflagration-to-detonation transition, Combustion and Flame 122, 492-499.
[2] Kagan, L., and Sivashinsky, G. (2003), The transition from deflagration to detonation in thin channels, Combustion and Flame 134, 389-397.
[3] Bychkov, V., and Akkerman, V. (2006), Explosion triggering by an acceleration flame, Physical Review E 73, 066305.
[4] Akkerman, V., Bychkov, V., Petchenko, A., and Eriksson, L.-E. (2006), Accelerating flames in cylindrical tubes with nonslip at the walls, Combustion and Flame 145, 206-219.
[5] Wu, M.-H., Burke, M.P., Son, S.F., and Yetter, R.A. (2007), Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes, Proceedings of the Combustion Institute 31, 2429-2436.
[6] Bychkov, V., Akkerman, V., Fru, G., Petchenko, A., and Eriksson, L.-E. (2007), Flame acceleration in the early stage of burning in tubes, Combustion and Flame 150, 263-276.
[7] Valiev, D.M., Bychkov, V., Akkerman, V., and Eriksson, L.-E. (2009), Different stages of flame acceleration from slow burning to Chapmon-Jouguet deflagration, Physical Review E 80, 036317.
[8] Kagan, L., and Sivashinsky, G. (2010), On the transition from deflagration to detonation in narrow tubes, Flow Turbulence and Combustion 84, 423-437.
[9] Wu, M.-H., and Wang, C.-Y. (2011), Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures, Proceedings of the Combustion Institute 33, 2287-2293.
[10] Bykov, V., Goldfarb, I., Gol'dshtein, V., Kagan, L., and Sivashinsky, G. (2004), Effects of hydraulic resistance and heat losses on detonability and flammability limits, Combustion Theory and Modelling 8, 413-424.
[11] Oppenheim, A.K., and Soloukhin, R.I. (1973), Experiments in gasdynamics of explosions, Annual Review of Fluid Mechanics 5, 31-58.
[12] 王長禹, 圓形截面微管內之預混焰傳遞模式解析, 國立成功大學機械工程學系碩士論文, 2010.
[13] 王俊凱, 預混焰於微管槽內加速機制之研究, 國立成功大學機械工程學系碩士論文, 2010.
[14] Kuo, W.-C., Chiu, P.-Y., and Wu, M.-H., Effect of nitrogen dilution on detonation transmission across a sudden expansion in a millimeter-scale channel, The 21st National Conference on Combustion Science and Technology, Yunlin, Taiwan, March 26, 2011.
[15] 郭維鈞, 微槽內爆震焰通過二維突擴之傳遞特性, 國立成功大學機械工程學系碩士論文, 2011.
[16] Ciccarelli, G., and Dorofeev, S. (2008), Flame acceleration and transition to detonation in ducts, Progress in Energy and Combustion Science 34, 499-550.
[17] Law, C.K., Combustion Physics, Cambridge University Press, New Jersey, 2006.
[18] Gamezo, V.N., and Oran, E.S. (2006), Flame acceleration in narrow channels: applications for micropropulsion in low-gravity environments, AIAA Journal 44, 329-336.
[19] Oran, E.S., and Gamezo, V.N., Flame acceleration and detonation transition in narrow tubes, Proceedings of the 20th ICDERS, Montreal, Canada, July 31-August 5, 2005.
[20] Bychkov, V., Petchenko, A., Akkerman, V., and Eriksson, L.-E. (2005), Theory and modeling of accelerating flame in tubes, Physical Review E 72, 046307.
[21] Kagan, L., and Sivashinsky, G. (2008), Autoignition due to hydraulic resistance and deflagration-to-detonation transision, Combustion and Flame 154, 186-190.
[22] Wu, M.-H., and Kuo, W.-C. (2012), Transition to detonation of an expanding flame ring in a sub-millimeter gap, Combustion and Flame 159, 1366-1368.
[23] Laderman, A.J., Urtiew, P.A., and Oppenheim, A.K. (1963), On the generation of a shock wave by flame in an explosive gas, Symposium (International) on Combustion 9, 265-274.
[24] Liberman, M.A., Kuznetsov, M., Ivanov, A., and Matsukov, I. (2009), Formation of the preheat zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition, Physics Letter A 373, 501-510.
[25] Kuznetsov, M., Matsukov, I., Alekseev, V., Breitung, W., and Dorofeev, S., Effect of boundary layer on flame acceleration and DDT, Proceedings of the 20th ICDERS, Montreal, Canada, July 31-August 5, 2005.
[26] Kuznetsov, M., Alekseev, V., Matsukov, I., and Dorofeev, S. (2005), DDT in a smmoth tube filled with a hydrogen-oxygen mixture, Shock Waves 14, 205-215.
[27] Valiev, D., Bychkov, V., Akkerman, V., Law, C.K., and Eriksson, L.-E. (2010), Flame acceleration in chanels with obstacles in the deflagration-to-detonation transition, Combustion and Flame 157, 1012-1021.
[28] Frolov, S.M., Sememov, I.V., Komissarov, P.V., Utkin, P.S., and Markov, V.V. (2007), Reduction of the deflagration-to-detonation transition distance and time in a tube with regular shaped obstacles, Physical Chemistry 415, 509-513.
[29] Liu, W., Mechanism of indirect initiation of detonation, Combustion and Flame 159, 1997-2007.
[30] Lee, J.H.S., The Detonation Phenomenon, Cambridge University Press, New York, 2008.
[31] Urtiew, P.A., and Oppenheim, A.K. (1966), Experimental observations of transition to detonation in an explosive gas, Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 295, 13-28.
[32] Papalexandris, M.V., Thomas, J.F., Jacobs, C., and Deledicque, V. (2007), Structural characteristics of detonation expansion from a small channels to a larger one, Proceedings of the Combustion Institute 31, 2407-2414.
[33] Pantow, E.G., Fischer, M., and Kratzel, T. (1996), Decoupling and recoupling of detonation waves associated with sudden expansion, Shock Waves 6, 131-137.
[34] Sorin, R., Zitoun, R., Khasainov, B., and Desbordes, D. (2009), Detonation diffraction through different geometries, Shock Waves 19, 11-23.
[35] Jiang, Z., Takayama, K., Babinsky, H., and Meguro, T. (1997), Transient shock wave flows in tubes with a sudden change in cross section, Shock Waves 7, 151-162.
[36] Abate, G., and Shyy, W. (2002), Dynamic structure of confined shocks undergoing sudden expansion, Progress in Aerospace Sciences 38, 23-42.
[37] Gelfand, B.E., Khomik, S.V., Bartenev, A.M., Medvedev, S.P., Gronig, H., and Oliver, H. (2000), Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture, Shock Wave 10, 197-204.
[38] Bartenev, A.M., Khomik, S.V., Gelfand, B.E., Gronig, H., and Olivier, H. (2000), Effect of reflection type on detonation initiation at shock-wave focusing, Shock Waves 10, 205-215.
[39] Settles, G.S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Springer, 2001.
[40] Serin, V., Lavieille, P., Lluc, J., and Miscevic, M. (2011), Experimental study of liquid-vaper phase distribution in a single tube capillary evaporator, Exp Fluids 50, 1261-1271.
[41] Takada, S., Murakami, M., Kimura, N., and Kobayashi, H. (2009), Visualization study of the interface between superheated He II and superheated He I in a two-dimensional narrow channel by using the shadowgraph method, Cryogenics 49, 576-582.
[42] Born, M., and Wolf, E., Principles of Optics 7th (Expanded) Edition, Cambridge University Press, UK, 1999.
[43] Han, Z., and Yin, X., Shock Dynamics, Kluwer Academic Publishers, 1992.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw