進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201123135300
論文名稱(中文) 地球化學方法制約台北及苗栗地區深層地下水來源
論文名稱(英文) Geochemical constraints on the origins of deep groundwaters beneath Taipei and Miaoli areas
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 鄭旻洵
研究生(英文) Min-Hsun Cheng
學號 l46981040
學位類別 碩士
語文別 英文
論文頁數 80頁
口試委員 指導教授-楊懷仁
口試委員-彭宗仁
口試委員-何恭算
中文關鍵字 深層地下水  地下水補注  87Sr/86Sr  δD  δ18O 
英文關鍵字 deep groundwater  discharge  87Sr/86Sr  δD  δ18O 
學科別分類
中文摘要 溫泉為台灣的珍貴的自然資源,過去數十年來,淺層(0-200公尺)的溫泉被開採作為觀光用途,近幾年來,1000-1500公尺深層地下水開始被開發使用,但深層地下水之化學特性並不如淺層地下水廣泛被研究。本研究於淡水、台北、苗栗地區採集深度超過八百公尺之深層地下水,利用水體中的氫氧鍶同位素比值及陰陽離子含量等地球化學參數,研究深層地下水的來源,並評估開採深層地下水之可行性。
淡水地區五個井位樣本之氯離子含量為35.7-179 mmole/L且鈉氯濃度比值大於1,顯示深層地下水中部分鈉離子來自圍岩貢獻,若海水為氯離子唯一來源,淡水樣本相當6.5%-33%海水與93.5%-67%天水之混合物,且淡水地區樣本中氯離子含量明顯高於台北及苗栗地區樣本 (台北地區樣本1.06-53.3 mmole/L;苗栗地區樣本0.05-11.3 mmole/L)。在δD-δ18O投圖中,淡水樣本朝高δ18O方向偏離天水線,顯示淡水地區深層地下水受水岩反應作用。若將海水的效應移除,淡水樣本之天水端成分的δD與δ18O值接近台北地區樣本,此特徵顯示,海水入侵淡水深層地下水體前,淡水地區和台北地區深層地下水可能源自同一水體。
淡水地區五個井位樣本之鍶同位素比值(87Sr/86Sr = 0.70791-0.70891)和鍶濃度倒數呈反比關係,為兩端成分之混合之結果,淡水樣本1/Sr–87Sr/86Sr關係顯示,其中高87Sr/86Sr比值端成分為現代海水,另一端成分則為天水與具高Sr濃度、低87Sr/86Sr比值成分之混和物。此低87Sr/86Sr端成分推測有兩種可能,其一為古海水,另一可能為天水和圍岩中不同比例的火成岩及沉積岩水岩反應形成。但經模式計算且以樣本中氯含量作驗證後,排除古海水為此低87Sr/86Sr端成分的可能性,且模式計算結果顯示,此具高Sr濃度、低87Sr/86Sr比值之端成分為天水和圍岩中約等量的火成岩及沉積岩水岩反應形成。
模式計算結果亦指示淡水深層地下水之演化過程,淡水樣本為天水於遷移和補注的過程中與圍岩中的火成岩及沉積岩水岩反應,再受現代海水混染,且模式計算結果顯示,天水-海水混和水體並無與圍岩反應之特徵,推論海水入侵應為近期事件,然海水入侵及水岩反應的時間仍待以定年資料釐清。
台北及苗栗地區深層地下水的δD與δ18O值落在天水線上,顯示其源自於天水,和主要元素之結果符合。台北樣本可再依鍶同位素特徵分為兩群,新店、汐止地區樣本87Sr/86Sr比值分別為0.71192和0.71316偏離天水指向沉積岩,此類樣本可能為天水和沉積岩水岩反應形成,而土城、樹林、中和地區樣本87Sr/86Sr比值偏低(87Sr/86Sr=0.70713-0.70892)較接近安山岩,受圍岩中之安山岩影響。
苗栗地區樣本的δD與δ18O值亦落在天水線上,但相較於台北、淡水地區樣本及現代天水,其值偏負,推測苗栗地區深層地下水補注當時氣候條件和現在不同,且若考慮地形因素,苗栗樣本可能受高程效應之影響,且苗栗地區樣本鍶同位素相較於台北及淡水地區偏重(87Sr/86Sr=0.70955-0.71529),推測主要成因為天水和沉積岩層水岩反應形成。
本研究結果顯示,長期觀測深層地下水體氫氧同位素及鍶同位素等資訊,可建立水體之補注模式,並可應用於評估開發長期使用深層地下水之可行性。
英文摘要 Hot springs are precious geological resources in Taiwan. In past 3 decades, most hot spring sites discharge groundwaters from 100-200 meter below surface. In recent years, groundwaters from depths of 1000-1500 meters are also sourced in several communities. However, the chemical properties of these deep groundwaters have yet been as intensively investigated as those from shallower depths. Here, we present strong contrasts in major ion abundances and isotope ratios of O, H, and Sr for >800 meter deep groundwaters from Taipei, Danshuei and Miaoli areas to constrain the origins of water masses and to evaluate the feasibility of developing deep groundwater.
The Cl contents in Danshuei samples vary in a large range of 35.7-179 mmol/L with Na/Cl ratio > 1, reflecting contribution from wall-rocks to the Na budget in these groundwaters. If seawater is the only source for Cl, the Danshuei samples are mixtures of 6.5–32.9% seawater and 93.5–67.1% meteroric water. Contrasting to the high Cl contents in the Danshuei samples, the Taipei and Miaoli samples are characterized by low Cl contents of 1.06–53.3 mmole/L and 0.05–11.3 mmole/L, respectively. In the δD–δ18O space, the Danshuei samples are also distinct from other samples for deviating from the GMWL toward higher δ18O values, reflecting interaction with wall rocks. After removing the seawater component, the meteoric water component in the Danshuei samples have δD and δ18O values similar to that of the Taipei samples, implying a common water mass before seawater intruding the Danshuei samples.
The five Danshuei samples have 87Sr/86Sr ratio ranging from 0.70791 to 0.70891, and the inverse 1/Sr–87Sr/86Sr correlation of the Danshuei samples is a result of two-component mixing. Specifically, the high 87Sr/86Sr end of the Danshuei 1/Sr–87Sr/86Sr trend argues unambiguously for modern seawater as a mixing end-member. The low 87Sr/86Sr end-member is explained by meteoric water mixing with a high Sr - low 87Sr/86Sr component, which could be ancient seawater or varying proportions of sedimentary and igneous rocks. Mixing model calculations preclude ancient seawater as the low 87Sr/86Sr component for its high Cl content. Mixing model calculations further show that the 1/Sr–87Sr/86Sr–Cl systematic of the Danshuei samples is best explained by meteoric water incorporating sub-equal proportions of andesitic and sedimentary wall-rocks.
Most significantly, the mixing model exerts an important implication on the evolution of the water mass in the > 1 km deep aquifer beneath Danshuei region. The water mass was initially dominated by meteoric water, which underwent interaction with igneous and sedimentary rockss during migrating to and/or residing in the aquifer. Subsequently, seawater intruded the aquifer. Because the 1/Sr–87Sr/86Sr systematic shows no evidence for interaction between the hybrid water mass and wall-rocks, the seawater intrusion is inferred to be a rather recent event. The timing of seawater intrusion and the duration of meteoric water-wall rock interaction, however, remain to be resolved.
On the δD–δ18O space, the Taipei and Miaoli samples cluster along the MWL. Apparently, local meteoric water constantly recharges the Taipei and Miaoli deep groundwaters. The Taipei samples are divided into two groups based on the 87Sr/86Sr values. Shindien and Shijr samples have 87Sr/86Sr ratios of 0.71192 and 0.71316, deviating from the meteoric water component toward the sedimentary component. The feature indicates that these samples are meteoric water interacted with sedimentary lithologies. In contrast, the Tucheng, Shulin and Jhonghe samples have lower 87Sr/86Sr value (ranging from 0.70713 to 0.70892), implying involvement of andesitic component.
The Miaoli samples plot on the MWL with δD and δ18O values lower than Danshuei and Taipei modern meteoric water. This feature can be explained as that the Miaoli deep groundwaters were recharged during earlier climatic phases and reflect the altitude effect. In Miaoli samples, the radiogenic 87Sr/86Sr values (87Sr/86Sr = 0.70955–0.71529) are results of interaction with sedimentary lithologies.
In conclusion, the results from this study show that a long-term monitoring on the chemical features of deep groundwatwes can be applied to evaluate the feasibility of developing the deep aquifer and to provide insight into the recharging pattern of deep water masses.
論文目次 Table of Contents
摘要................................................... I
Abstract..............................................III
致謝.................................................VI
Table of Contents ............................. VII
List of Figures ...................................IX
List of Tables.............................. XII
Chapter 1 Introduction ...........................1
Chapter 2 Geological Background and Sampling Locations.....7
Chapter 3 Methods.............................15
3.1 Anion concentration analysis.....................17
3.2 Major cation concentration analyses...................18
3.3 δD and δ18O measurements..............19
3.4 87Sr/86Sr measurements .............20
3.5 Matrix effect.........................22
Chapter 4 Results ..............................24
4.1 Major element abundances ................24
4.2 δD and δ18O: sample grouping..................25
4.3 Sr isotope composition.............26
Chapter 5 Discussion .........................32
5.1 Seawater and mineral precipitation/dissolution controls on major ion groundwaters .............32
5.2 The relationship among water masses inferred from δD and δ18O.......39
5.3 87Sr/86Sr constraints on seawater intrusion and water-rock interactions.........................50
Chapter 6 Conclusions ........................69
References...............................................72
參考文獻 References
Ambach, W., Dansgaard, W., Eisner, H. and Moller, J. (1968) The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps. Tellus 20: 595-600.
Back, W. (1960) Origin of hydrochemical facies in groundwater in the Atlantic coastal plain. Proceedings, International Geological Congress (Copenhagen) I: 87-95.
Back, W. (1966) Hydrochemical faceies and groundwater flow patterns in northern part of Atlantic coastal plain. U.S. Geological Survey Professional Paper :498-A.
Banner, J. L., Wasserburg, G. J., Dobson, P. F., Carpenter, A. B. and Moore, C. H. (1988) Isotopic and trace element constrains on the origin and evolution of saline groundwaters from central Missouri. Geochemica et Cosmochimica Acta 53: 383-398.
Ben Othman, D., Luck, J. M. and Tournoud, M. G. (1997) Geochemistry and water dynamics: application to short time–scale flood phenomena in a small Mediterranean catchment: I. Alkalis, alkali–earths and Sr isotopes. Chemical Geology 140: 9–28.
Berner, E. K. and Berner R. A. (1987) The Global Water Cycle. Prentice-Hall, Upper Saddle River, NJ, 397pp.
Bethke, C. M. and Marshak, S. (1990) Brine migration across North America –the plate tectonics of groundwater. Annual Reviews in Earth and Planetary Sciences 18: 287–316.
Brookins, D. G. (1988) Seawater 87Sr/86Sr for the late Permian Delaware Basin evaporates, New Mexico, USA. Chemical Geology 69: 209–214.
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, N. F. and Otto, J. B. (1982) Variation of seawater 87Sr/86Sr throughout Panerozoic time. Geology 10: 516-519.
Bullen, T. D., White, A. F., Blum, A. E., Harden, J. W. and Schulz, M. S. (1997) Chemical weathering of a soil chronosequence on granitoid alluvium, II: mineralogic and isotopic constraints on the behavior of strontium. Geochim. Cosmochim. Acta 61: 291–306.
Cerling, T. G., Pederson, B. L. and Von Damm, K. L. (1989) Sodiumcalcium ion exchange in the weathering of shales: Implication for global weathering budgets. Geology 17: 552–554.
Chaudhuri, S., Broedel, V. and Clauer, N. (1986) Strontium isotopic evolution of oil-field waters from carbonate reservoir rocks in Bindley field, central Kansas, U.S.A. Geochimica et Cosmochimica Acta 51: 45-53.
Chaudhuri, S. and Clauer, N. (1993) Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins: Clues to the origin of the solutes. Geochemica Cosmochimica Acta, 57: 429-437
Chen, C. H. (1988) Mineral compositions of primary phases in utramatic rocks in the Coastal Range, eastern Taiwan and imolication of source region of thease rocks: Acta Geology Taiwanica 26: 193-222
Cheng, M. C., You, C. F., Lin, F. J., Chung, C. H. and Huang, K. F. (2010) Seasoal variation in long-range transported dust to a subtropical islet offshore northern Taiwan: Chemical composition and Sr isotopic evidence in rainwater. Atmospheric Environment 44 (28): 3386-3393
Clark, I. D. and Fritz, P. (1997) Environments isotopes in hydrogeology. CRC Press/Lewis Publishers, Boca Raton, FL.
Connolly, C. A., Walter, L. M., Baadsgaard, H. and Longstaffe, F. J. (1990) Origin and evolution of formation waters, Alberta Basin, Western Canada sedimentary Basin. I. Chemistry. Applied Geochemistry 5: 375-395.
Craig H. (1961) Isotopic variations in meteoric waters. Science 133:1702-1703.
Craig, H. Lupton, J. E. and Horowiff, R. M. (1977) Isotope Geochemistry and Hydrology of Geothermal Waters in the Ethiopian Rift Valley. In: Technical Report, Scripps Institute of Oceanography University of California, USA.
Dansgaard, W. (1964) Stable isotopes in precipitation. Telus 16: 436-468.
Dutton, A. R. and Simpkins, W. W. (1989) Isotopic evidence for paleohydrologic evolution of ground-water flow paths, Southern Great Plains, USA. Geology 17: 653–656.
Epstein, S. and Mayeda, T. (1953) Variation of δ18O content of waters from natural sources. Geochimica et Cosmochimica Acta 4: 213–224
Fisher, R. S. and Kreitler, C. W. (1987) Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, U.S.A. Applied Geochemistry 2: 459–476.
Fontes, J. Ch. and Matray, J. M. (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1 Brines associated with Triassic salts. Chemical Geology 109: 149–175.
Fournier, R. O. (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5: 41–50.
Gibbs, R. J. (1970) Mechanisms controlling world water chemistry. Science 170:1088-1090.
Giggenbach, W. F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta 52: 2749–2765.
Gonfiantini, R., Roche, M. A., Olivry, J. C., Fontes, J. C. and Zuppi, G. M. (2001) The altitude effect on the isotopic composition of tropical rains. Chemical Geology 181: 147-167.
Gorrell, H. A. (1953) Classification of formation waters based on sodium chloride content. American Association of Petroleum Geologists Bulletin 42: 2513.
Graf, D. L. (1982) Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica et Cosmochimica Acta 46: 1431–1448.
Gunter, F. (1998) Principles and applications of geochemistry: a comprehensive textbook for geology students, 2nd ed. Prentice-Hall, Upper Saddle River, NJ, 600pp.
Ho, C. S. (1975) An introduction to the geology of Taiwan explanatory text of the geologic map of Taiwan. 153pp.
Hurst, A. and Irwin, H. (1982) Geological modeling of clay diagenesis in sandstones. Clay minerals 17: 5-22.
Johannesson, K. H., Farnham, I. M., Guo, C. and Stetzenbach, K. J. (1999) Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basion-fill aquifer, southern Nevada, U.S.A. Geochemica et Cosmochimica Acta 63: 2697-2708.
Kanchan, P, Sarina, M. M., Trivedia, J. R., Krishnaswamia, S. and Sharmab, K. K. (1994) The Indus river system (India-Pakistan): Major-ion chemistry, uranium and strontium isotopes. Chemical Geology 116: 245-259.
Kharaka, Y. K. and Carothers, W. W. (1986) Oxygen and hydrogen isotope geochemistry of deep basin brines. In: Frtiz P, Fontes JC, editors. Handbook of environmental geochemistry, vool. 2. The terrestrial environment: 305-361
Kloppmann, W., Négrel, P., Casanova, J., Klinge, H., Schelkes, K. and Guerrot, C. (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta 65: 4087-4101.
Langman, J. B. and Ellis, A. S. (2010) A multi-isotope (δD, δ18O, 87Sr/86Sr, and δ11B) approach for identifying saltwater intrusion and resolving groundwater evolution along the Western Caprock Escarpment of the Southern High Plains, New Mexico. Applied Geochemistry 25: 159-174.
Lawrence, J. R. and Taylor, H. P. (1971) Deuterium and oxygen-18 correlation: clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochimica et Cosmochimica Acta 35: 993-1003.
Livingstone, D. A. (1963) Chemical composition of rivers and lakes. In M, Fleischer (Ed.), Data of geochemistry, 6th ed. U.S. Geol. Surv. Prof. Paper440.
Lyons, W. B., Tyler, S. W., Gaudette, H. E. and Long, D. T. (1995) The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone. Journal of Hydrology 167: 225-239.
Maduabuchi, C., Faye, S. and Maloszewski, P. (2006) Isotope evidence of palaeorecharge and palaeoclimate in the deep confined aquifers of the Chad Basin, NE Nigeria. Science of the Total Environment 370:467-479.
Matray, J. M., Lambert, M. and Fontes, J. Ch. (1994) Stable isotope conservation and origin of saline waters from the Middle Jurassic aquifer of the Paris Basin, France. Applied Geochemistry 9: 297–309.
Matthias, G. and Hans, G. M. (2002) Saline groundwater in the Munsterland Cretaceous Basin, Germany: clues to its origin and evolution. Marine and petroleum Geology, 19: 307-322.
McArthur, J. M., Turner, J. V., Lyons, W. B. and Thirlwall, M. F. (1989) Salt sources and water-rock interaction on the Yilgarn Block, Australia: Isotopic and major element tracers. Applied Geochemistry. 4: 79–92.
Meybeck, M. (1979) Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. Rev. Geol. Dyn. Geogr. Phys.,21(3): 215-246.
Millot, R., Guerrot, C., Innocent, C., Négrel, Ph. and Sanjuan, B. (2011) Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin. Chemical Geology 283: 226-241.
Misra, K. C. (2003) Understanding Mineral Deposits, Kluwer Academic Publishers, 864pp.
Moldovanyi, E. P., Walter, L. M. and Land, L. S. (1993) Strontium, boron, oxygen, and hydrogen isotope geochemistry of brines from basal strata of the Gulf Coast sedimentary basin, USA. Geochimica et Cosmochimica Acta, 57: 2083–2099.
Négrel, P. and Emmanuelle, P. G. (2010) Geochemistry, isotopic composition (δ18O, δ2H, 87Sr/86Sr, 143Nd/144Nd) in the groundwater of French Guiana as indicatiors of their origin, interrelations. Comptes Rendus Geoscience 342: 786-795.
Pande, K., Sarin, M. M., Trivedi, J. R., Krishnaswami, S. and Sharma, K. K. (1994) The induce river system (India–Pakistan): major ion chemistry, uranium and strontium isotopes. Chemical Geology 116: 245–259.
Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y. and Hwong, J. L. (2010) Stable isotopic characteristic of Taiwan’s precipitation: a case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3/4):357-366.
Rango, T., Petrini, R., Stenni, B, Bianchini, G., Slejko, F. Beccaluva, L. and Ayenew, T. (2010) The dynamics of central Main Ethiopian Rift waters: Evidence from δD, δ18O and 87Sr/86Sr ratios. Applied Geochemistry 25: 1860-1871.
Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. In: Climate Change in Continental Isotopic Records, P.K. Swart, K.C. Lohmann, J. McKenzie, and S. Savin, editors, Geophysical Monograph 78, American Geophysical Union :1-36.
Schofield, S. and Jankowski, J. (2004) Hydrochemistry and isotopic composition of NaHCO3-rich groundwaters from the Ballimore region, central New South Wales, Australia. Chemical Geology: 111–34.
Shen, J. J. and Yang, H. J. (2004) Sources and genesis of the Chinkuashih Au-Cu deposits in northern Taiwan: Constraints from Os and Sr isotopic compositions of sulfides. Earth and Planetary Science Letters 22: 71-83.
Smedley, P. (1991) The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochimica et Cosmochimica Acta 55: 2767-2779.
Starinsky, A., Bielski, M., Lazar, B., Steinitz, G. and Raab, M. (1983) Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel. Geochimica et Cosmochimica Acta 47: 687-695.
Stallard, R. F. and Edmond, J. M. (1983) River chemistry, geology, geomorphology and soils in the Amazon and Orinoco basins. In J.I. Drever (Ed.), The Chemistry of Weathering :293-316.
Stein, M., Starinsky, A., Agnon, A., Katz, A., Raab, M., Spiro, B. and Zak, I. (2000) The impact of brine-rock interaction during marine evaporate formation on the isotopic Sr record in the oceans- Evidence from Mt. Sedon, Israel. Geochimica et Cosmochimica Acta 64: 2039–2053.
Steuber, A. M., Pushkar, P. and Hetherington, E. A. (1984) A strontium isotopic study of Smackover brines and associated solids, southern Arkansas. Geochimica et Cosmochimica Acta 48: 1637-1650.
Sunwall, M. T. and Pushkar, P. (1979) The isotopic composition of strontium in brines from petroleum fields of southeastern Ohio. Chemical Geology 24: 189-197.
Taylor, H. P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and deposition. Economic Geology 69:843-883.
Wang, C. H. and Peng, T. R. (2001) Hydrogen and oxygen isotopic compositions of Taipei precipitation: 1990-1998. Western Pacific Earth Sciences, 1(4):429-442.
Viers, J., Dupre, B., Braun, J. J., Deberdt, S., Angeletti, B., Ngoupayou, J. N. and Michard, A. (2000) Major and trace element abundances, and strontium isotopes in the Nyong basin rivers Cameroon: constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology 169: 211–241.
Wang, C. H., Peng T. R., Chen, W. F., Liu, T. K., Chiang, C. J., Liu, W. C. and Hung, J. J. (2001) Isotope characteristic of Taiwan groundwaters. Western Pacific Earth Sciences 1(4): 415-428.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw