進階搜尋


下載電子全文  
系統識別號 U0026-2308201115575000
論文名稱(中文) 發展一測量體內多巴胺之快速掃描循環伏安法模組
論文名稱(英文) Development of Fast-scan Cyclic Voltammetric Recording Module for In-vivo Dopamine Measurement
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳冠丞
研究生(英文) Guan-Cheng Chen
學號 p86984138
學位類別 碩士
語文別 英文
論文頁數 40頁
口試委員 指導教授-陳家進
口試委員-鄭國順
口試委員-張憲彰
口試委員-梁勝富
口試委員-Robert Rieger
中文關鍵字 帕金森氏症  多巴胺  安培法  快速循環伏安法  微型化電化學系統 
英文關鍵字 Parkinson’s disease  Dopamine  Amperometry  Fast scan cyclic voltammetry  Miniature electrochemical system 
學科別分類
中文摘要 帕金森氏症是一種常見的神經退化性疾病(neuro-degenerative disease),其主要病徵為腦部多巴胺之逐漸性缺乏,其起因係位於中腦黑質核(substantia nigra)區域的多巴胺神經細胞(dopaminergic neurons)死亡。關於體內多巴胺定量之重要性,經過各種新穎治療後,針對帕金森氏症動物模型的神經可塑性之評估,可提供直接的證據。電化學分析技術相較於傳統的免疫組織染色、神經顯影技術與微透析法,其擁有良好的時間解析度與可攜式記錄平臺之特性。
為達到即時記錄大鼠腦部多巴胺濃度之效果,本研究以快速循環伏安法之原理研發微型化之電化學記錄系統。利用體外實驗進行系統驗證,以碳纖維自製的微電極,配合本自製系統可以偵測到在電位0.5伏特(以Ag/AgCl電極為參考電極)可觀察到一明顯峰電流,且伴隨連續多巴胺的添加可獲得成比例增加的趨勢。根據反應電流相對於多巴胺濃度之校正曲線,顯示線性工作區間為100 ~ 1500 nM、相關係數為0.996;且在多巴胺的偵測上,快速循環伏安法的靈敏度為安培法的6.4倍。關於動物實驗方面,應用深腦電刺激誘發多巴胺釋放以進行系統驗證,由目前的實驗結果顯示,感應電流與電刺激電極植入於腦腹側被蓋區(ventral tegmental area)和記錄電極放置在紋狀體(striatum)有關,證明解剖結構專一性和多巴胺濃度變化具有相關性。此外,在相同量測情形下,反應電流對於連續性電刺激擁有時間專一性。整體而言,碳纖維微感測器配合我們所設計的快速循環伏安法記錄系統,可以實際應用在偵測大鼠腦部因電刺激所誘發之多巴胺釋放。快速循環伏安法記錄系統可藉由結合無線傳輸技術而增加其可行性,使其可應用於針對自由行動的實驗動物,進行多巴胺濃度變化之即時性監控,探討所給予治療方式對於多巴胺神經之調節作用與行為評估之相關性。因此,此系統將有助於針對帕金森氏症患者經由新穎的疾病治療與管理,提供直接之證據。
英文摘要 Parkinson’s disease (PD), a common neurodegenerative disorder, is characterized by progressive depletion of dopamine (DA) due to death of the dopaminergic neurons in the substantia nigra. The significance of in-vivo DA quantification provides direct evidences for assessing the neuro-plasticity on PD animal model under various novel treatments. In addition to conventional immunohistological staining, neuroimaging and microdialysis, the electroanalytical techniques could be valuable for real-time DA monitoring on awake animal model because of high temporal resolution and portable recording platform.
To accomplish the real-time DA recording in rat’s brain, this study developed a miniature electrochemical recording system for fast scan cyclic voltammetry (FSCV) observation of in-vivo DA. . During in-vitro validation, the self-designed carbon fiber microelectrodes coupled with the proposed FSCV system reveal that a well-defined peak current from DA oxidation appeared at +0.5V (vs. Ag/AgCl) and increased in proportion to a series of DA addition. The calibration curve between response current versus various DA concentration indicates that the linear working range of DA is obtained from 100 nM to 1500 nM with correlation coefficient of 0.996. The superior sensitivity of FSCV scan for DA detections is 6.4-fold in comparison with that of amperometric detection. As regards in-vivo study, deep brain electrical stimulation was applied to elicit DA release as a validation step for in-vivo DA detection using FSCV technique. The present results showed that the anatomical specificity related to the locations of the stimulation electrode in ventral tegmental area and the recording sensor in striatum. Moreover, the response currents had a temporal specificity corresponding to successive electrical stimulations with the same conditions. On a whole, that carbon fiber microsensors coupled with our proposed FSCV recording system have demonstrated that the practical promise for in-vivo observation of electrically evoked DA release in rat brain.
The future study is to integrate the miniature FSCV recording system with wireless transmission for real-time monitoring of DA variations on freely moving animal model, which could explore the relationship between the modulatory effects on dopaminergic neurons and behavioral assessments under various treatment protocols. Therefore, this proposed recording system can provide direct evidences of novel treatments for the management of PD disorders in the future.
論文目次 中文摘要 i
Abstract ii
誌謝 iv
Contents v
List of Tables viii
Chapter 1 Introduction - 1 -
1.1 Introduction of Parkinson’s disease and treatment - 1 -
1.2 Significance and manipulation of dopamine monitoring - 2 -
1.2.1 Immunohistological staining and functional imaging techniques - 3 -
1.2.2 In-vivo DA detections with microdialysis - 3 -
1.2.3 In-vivo DA recording with electroanalytical techniques - 4 -
1.3 Approaches of electrochemical measurement - 6 -
1.3.1 Voltammetric techniques - 6 -
1.3.2 Amperometry and differential pulse amperometry - 8 -
1.3.3 Fast scan cyclic voltammetry - 8 -
1.4 Motivation and the aims of this study - 10 -
Chapter 2 Materials and Methods - 11 -
2.1 Dopamine sensing electrodes - 11 -
2.2 Voltammetric method of FSCV - 12 -
2.3 Dopamine recording system - 14 -
2.4 Electrical stimulator - 17 -
2.5 Animal preparation and surgical procedure - 19 -
2.6 Signal process and data analysis - 21 -
Chapter 3 Results - 22 -
3.1 Fabrication of carbon fiber microelectrode - 22 -
3.2 Design of electrochemical recording system - 22 -
3.2.1 Amperometric DA detection with self-designed DA sensing system - 22 -
3.3 Validation of self-designed electrical stimulator - 28 -
3.4 Communication between electrical stimulation and FSCV recording - 29 -
3.5 In-vivo DA sensing with FSCV in striatum of anesthetized rats - 29 -
3.5.1 FSCV for in-vivo DA detection at various stimulation and recording sites - 30 -
Chapter 4 Discussion and Conclusion - 34 -
4.1 DA recording system using carbon fiber microelectrode - 34 -
4.2 Comparison of electrochemical characteristics between amperometry and FSCV - 35 -
4.3 The evoked DA monitoring with FSCV system by electrical stimulation - 35 -
4.4 Conclusion - 36 -
References - 37 -
參考文獻 Allen J. Bard LRF (2001) Electrochemical Methods: John Wiley & Sons, Inc.
Bares M, Kopecek M, Novak T, Stopkova P, Sos P, Kozeny J, Brunovsky M, Höschl C (2009) Low frequency (1-Hz), right prefrontal repetitive transcranial magnetic stimulation (rTMS) compared with venlafaxine ER in the treatment of resistant depression: A double-blind, single-centre, randomized study. Journal of Affective Disorders 118:94-100.
Borland LM, Michael AC (2007) An Introduction to Electrochemical Methods in Neuroscience.
Brazell MP, Kasser RJ, Renner KJ, Feng J, Moghaddam B, Adams RN (1987) Electrocoating Carbon-Fiber Microelectrodes with Nafion Improves Selectivity for Electroactive Neurotransmitters. J Neurosci Meth 22:167-172.
Caraceni T, Musicco M (2001) Levodopa or dopamine agonists, or deprenyl as initial treatment for Parkinson's disease. A randomized multicenter study. Parkinsonism & Related Disorders 7:107-114.
Chen PH, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958-3965.
Crespi F (2009) Anxiolytics antagonize yohimbine-induced central noradrenergic activity: A concomitant in vivo voltammetry-electrophysiology model of anxiety. J Neurosci Meth 180:97-105.
Das T, Singh L, Singh NC (2008) Rhythmic structure of Hindi and English: new insights from a computational analysis. Prog Brain Res 168:207-+.
Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355:896-908.
Eggins BR (2002) Chemical sensors and biosensors.
Foffani G, Ardolino G, Egidi M, Caputo E, Bossi B, Priori A (2006) Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease. Brain Research Bulletin 69:123-130.
Ghabra MB, Hallett M, Wassermann EM (1999) Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology 52:768-770.
Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature 286:902-904.
Gonon FG, Navarre F, Buda MJ (1984) In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Anal Chem 56:573-575.
Hahn Z, Cespuglio R, Faradji H, Jouvet M (1985) Factors Influencing the Properties of Voltammetric Carbon-Fiber Electrodes - the Importance of the Ph of the Medium Used for the Electrical Treatment and of the Resin Coating of the Fibers. J Biochem Bioph Meth 11:265-275.
Heidbreder CA, Lacroix L, Atkins AR, Organ AJ, Murray S, West A, Shah AJ (2001) Development and application of a sensitive high performance ion-exchange chromatography method for the simultaneous measurement of dopamine, 5-hydroxytryptamine and norepinephrine in microdialysates from the rat brain. J Neurosci Meth 112:135-144.
Hsueh C, Bravo R, Jaramillo AJ, BrajterToth A (1997) Surface and kinetic enhancement of selectivity and sensitivity in analysis with fast scan voltammetry at scan rates above 1000 V/s. Analytica Chimica Acta 349:67-76.
Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson's disease. CNS Drugs 21:677-692.
Klein A, Wessolleck J, Papazoglou A, Metz GA, Nikkhah G (2009) Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats. Behav Brain Res 199:317-325.
Lee J-S (2010) Biomedical engineering entrepreneurship. Singapore Hackensack, NJ: World Scientific.
Li MR, Deng CY, Xie QJ, Yang Y, Yao SZ (2006) Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing. Electrochim Acta 51:5478-5486.
Metz GA, Tse A, Ballermann M, Smith LK, Fouad K (2005) The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis. European Journal of Neuroscience 22:735-744.
Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, Pharmacological and Electrophysiological Evidence of Rapid Dopamine Release and Removal in the Rat Caudate-Nucleus Following Electrical-Stimulation of the Median Forebrain-Bundle. Eur J Pharmacol 109:341-348.
Nakazato T, Akiyama A (1992) Decarboxylation of Exogenous L-3,4-Dihydroxyphenylalanine in Rat Striatum as Studied by Invivo Voltammetry. Journal of Neurochemistry 58:121-127.
Oneill RD (1994) Microvoltammetric Techniques and Sensors for Monitoring Neurochemical Dynamics in-Vivo - a Review. Analyst 119:767-779.
Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM (2008) Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci U S A 105:11957-11962.
Palij P, Bull DR, Sheehan MJ, Millar J, Stamford J, Kruk ZL, Humphrey PPA (1990) Presynaptic Regulation of Dopamine Release in Corpus Striatum Monitored Invitro in Real-Time by Fast Cyclic Voltammetry. Brain Research 509:172-174.
Paul A. Garris PGG, Stefan G. Sandberg, Greg Howes, Sirinun Pongmaytegul, Byron A. Heidenreich, Joseph M. Casto, Robert Ensman, John Poehlman, Andy Alexander, and George V. Rebec (2007) Electrochemical Methods for Neuroscience.
Robinson DL, Hermans A, Seipel AT, Wightman RM (2008a) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554-2584.
Robinson DL, Hermans A, Seipel AT, Wightman RM (2008b) Monitoring Rapid Chemical Communication in the Brain. Chemical Reviews 108:2554-2584.
Rogers MW (1996) Disorders of posture, balance, and gait in Parkinson's disease. Clinics in Geriatric Medicine 12:825-+.
Thobois S, Jahanshahi M, Pinto S, Frackowiak R, Limousin-Dowsey P (2004) PET and SPECT functional imaging studies in Parkinsonian syndromes: from the lesion to its consequences. Neuroimage 23:1-16.
Venton BJ, Robinson TE, Kennedy RT, Maren S (2006) Dynamic amino acid increases in the basolateral amygdala during acquisition and expression of conditioned fear. Eur J Neurosci 23:3391-3398.
Vitek JL (2002) Deep brain stimulation for Parkinson's disease. A critical re-evaluation of STN versus GPi DBS. Stereotact Funct Neurosurg 78:119-131.
Zak J, Kuwana T (1982) Electrooxidative Catalysis Using Dispersed Alumina on Glassy-Carbon Surfaces. J Am Chem Soc 104:5514-5515.
Zhang MY, Beyer CE (2006) Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography-mass spectrometry. J Pharm Biomed Anal 40:492-499.
Zheng H, Zhang L, Li L, Liu P, Gao J, Liu X, Zou J, Zhang Y, Liu J, Zhang Z, Li Z, Men W (2010) High-frequency rTMS treatment increases left prefrontal myo-inositol in young patients with treatment-resistant depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34:1189-1195.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw