進階搜尋


下載電子全文  
系統識別號 U0026-2308201115235100
論文名稱(中文) 應用於足底血流灌注特性之生醫電阻抗測量系統設計
論文名稱(英文) Bioimpedance Measuring System Design for Foot Sole Blood Perfusion Characterization
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 柯雁芬
研究生(英文) Yen-Fen Ko
電子信箱 kklven@gmail.com
學號 p8697408
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-鄭國順
召集委員-許永和
口試委員-黃基哲
口試委員-王明習
口試委員-吳晉祥
中文關鍵字 電阻抗  血流灌注 
英文關鍵字 bioimpedance  blood perfusion 
學科別分類
中文摘要 有別以往的方法生物電阻抗技術在醫療保健方面可以提供有用資訊,以便作為疾病預防及診斷之參考。在生醫電阻抗量測時,溫度對測量系統與組織阻抗皆有影響;其次糖尿病足問題是對患者具有相當嚴重影響,足部周邊神經和阻塞性血管病變會呈現出不同於正常部位的組織電特性,尤其在糖尿病患者足底溫度會因病情嚴重程度有所差異,而影響電阻抗測量結果。本研究目的在於1、量化溫度對電阻抗量測的影響,2、研製一套具有溫度補償的電阻抗量測系統,和3、應用於臨床預測評估足底潰瘍或缺血部位。本研究中,此系統硬體設計包括四個部分為阻抗量測、溫度感測、電極設計與通道切換裝置。系統軟體功能主要分為三個部分,有受測者資訊寫入,訊號解調與系統校正,和數據擷取與分析。本系統阻抗測量訊號的總諧波失真小於0.17%,最大誤差小於2%,同時也具有模組化電路設計以方便整合與擴充,和容易操作之電腦圖形控制介面的特點。再者電極的設計,使用有限元素分析法模擬電流在不同的電極間距下,可以到達的測量深度,以確保可以測量腳底血流灌注。結果顯示所記錄之動態血流變化與雷射都卜勒血流儀測量值具有很好相關性(r=0.86)。
英文摘要 In contrast to traditional methods, bioimpedance technology provides valuable information for disease prevention and diagnosis in healthcare. In bioimpedance measurement, temperature may significantly affect both the system and tissue impedance. The diabetic foot problem may also have great effect to the patient. Due to the neurovascular pathology of diabetic foot, the abnormal area shows the different tissue impedance as well as the temperature. Thus, the tissue impedance may be affected by the temperature. The purposes of this study are 1) to quantify the effect of temperature on bioimpedance measurement, 2) to develop the bioimpedance measurement system with temperature compensation, and 3) to apply for characterizing the ischemic area of foot. In this study, the hardware design includes impedance measurement, (2) temperature measurement, electrode design, and channel selection circuitry. The software design for the proposed system contains subject information setting, signal demodulation and system calibration, and data acquisition and analysis. The total harmonic distortion of bioimpedance measuring circuit of the proposed system is below 0.17% and the maximal error is below 0.2%. In addition, the proposed system also has the module circuitry design for convenience of integration and graphical user interface for ease of use. In electrode design, the current paths of different gaps between the electrodes are also simulated using finite element analysis so as to confirm the penetration depth of current for perfusion measurement. From the experimental results, the dynamic bioimpedance measurement shows in a good correlation with the measurements of laser Doppler flowmetry (r = 0.86).
論文目次 中文摘要 I
ABSTRACT II
致謝 III
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Bioimpedance 1
1.2 Blood Flow Impedance Characterization 2
1.3 Effect of Temperature on Bioimpedance Measurement 6
1.4 Temperature Compensation 7
1.4.1 Temperature Correction Factor 8
1.4.2 Control of Ambient Temperature 10
1.5 Electrode Design 11
1.5.1 Varying Spacing Distance 11
1.5.2 Varying Disc area 11
1.6 Target Application 12
1.7 Motivation and purposes 13
Chapter 2 Materials and Methods 14
2.1 The research overview 14
2.2 Hardware Design 15
2.2.1 MCU 15
2.2.2 Impedance Measurement Circuit 16
2.2.3 Temperature Monitoring Circuit 21
2.2.4 Electrode Design and Position 22
2.2.5 Electrode Spacing Distance Simulation 23
2.3 Software Design 25
2.3.1 System Control Program 25
2.3.2 GUI 27
2.3.3 Demodulation Algorithm 29
Chapter 3 Results and Discussions 32
3.1 Bioimpedance Measuring System 32
3.1.1 Modular Circuit Design 33
3.2 The operational functions of developed system 35
3.3 The evaluation of developed system 37
3.3.1 Total harmonic distortion 37
3.3.2 Output impedance 40
3.3.3 Current out stability 42
3.3.4 The measurement error test 43
3.4 The decade resistor measurement 45
3.5 Temperature-Impedance calibration curve 47
3.6 COMSOL simulation 49
3.7 PORK test 54
3.8 GEL test 55
3.9 LDF and Bioimpedance system experiment 55
Chapter 4 Conclusions and Prospects 60
4.1 Conclusions 60
4.2 Prospects 61
References 62
參考文獻 [1] A.O. Ragheb, L.A. Geddes, J.D. Bourland, and W.A. Tacker, “Tetrapolar electrode system for measuring physiological events by impedance,” Medical & Biological Engineering & Computing, vol. 30, pp. 115-117, 1992.
[2] B.E. Lingwood, K.R. Dunster, G.N. Healy, and P.B. Colditz, “Effect of cooling and re-warming on cerebral and whole body electrical impedance,” Physiological Measurement, vol. 25, pp. 413-420, 2004.
[3] C. O'Brien, A. Young, and M. Sawka, “Bioelectrical impedance to estimate changes in hydration status,” INTERNATIONAL JOURNAL OF SPORTS MEDICINE, vol. 23, pp. 361-366, 2002.
[4] D.C. Smith, “Effects of skin blood flow and temperature on skin-electrode impedance and offset potential: measurements at low alternating current density,” Journal of Medical Engineering & Technology, vol. 16, pp. 112-6, 1992.
[5] J. Caton, “Body composition analysis by bioelectrical impedance: effect of skin temperature,” Medicine & Science in Sports & Exercise, vol. 20, pp. 489-91, 1988
[6] J. G. Webster, Electrical Impedance Tomography, Galliard Press, pp. 1-20, 1990.
[7] J.J. Huang, K.S. Cheng, and C.J. Peng, “Temperature-compensated bioimpedance system for estimating body composition,” Engineering in Medicine and Biology Magazine, IEEE, vol. 19, pp. 66-73, 2000.
[8] J.F. Edd, L. Horowitz, and B. Rubinsky, “Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery,” IEEE Transactions on Bio-Medical Engineering, vol. 52, pp. 695-701, 2005.
[9] J. Spottorno, M. Multigner, G. Rivero, L. Álvarez, J.D.L. Venta, and M. Santos, “Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current,” Physics in Medicine and Biology, vol. 53, pp. 1701-1713, 2008.
[10] J.R. Moon, A.E. Smith, S.E. Tobkin, C.M. Lockwood, K.L. Kendall, J.L. Graef, M.D. Roberts, V.J. Dalbo, C.M. Kerksick, J.T. Cramer, T.W. Beck, and J.R. Stout, “Total body water changes after an exercise intervention tracked using bioimpedance spectroscopy: a deuterium oxide comparison,” Clinical Nutrition (Edinburgh, Scotland), vol. 28, pp. 516-525, 2009.
[11] K.S. Cheng, D. Isaacson, J.C. Newell, and D.G. Gisser, “Electrode models for electric current computed tomography,” IEEE Transactions on Bio-Medical Engineering, vol. 36, pp. 918-24, 1989.
[12] L. Garby, O. Lammert, and E. Nielsen, “Negligible effects of previous moderate physical activity and changes in environmental temperature on whole body electrical impedance,” European Journal of Clinical Nutrition, vol. 44, pp. 545-546, 1990.

[13] M. Dehghan and A. Merchant, “Is bioelectrical impedance accurate for use in large epidemiological studies?,” Nutrition Journal, vol. 7, pp. 26, 2008.

[14] M. Bodenstein, M. David, and K. Markstaller, “Principles of electrical impedance tomography and its clinical application,” Critical Care Medicine, vol. 37, pp. 713-724, 2009.
[15] M.Y. Jaffrin and H. Morel, “Measurements of body composition in limbs and trunk using a eight contact electrodes impedancemeter,” Medical Engineering & Physics, vol. 31, pp. 1079-1086, 2009.
[16] R. Gudivaka, D. Schoeller, and R.F. Kushner, “Effect of skin temperature on multifrequency bioelectrical impedance analysis,” Journal of Applied Physiology, vol. 81, pp. 838-45, 1996.
[17] R.H. Bayford, “Bioimpedance tomography (electrical impedance tomography),” Annual Review of Biomedical Engineering, vol. 8, pp. 63-91, 2006.
[18] S. Grimnes and Ø.G. Martinsen, “Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors,” Journal of Physics D: Applied Physics, vol. 40, pp. 9-14, 2007.

[19] S. Grimnes and Ø.G. Martinsen, Bioimpedance and bioelectricity basics, Academic Press, 2008.
[20] M.E. Levin, L.W. O'Neal, J.H. Bowker, and M.A. Pfeifer, Levin and O'Neal's the diabetic foot, Elsevier Health Sciences, 2008.
[21] C. Application, "Laser doppler flowmetry-development and," The Iowa Orthopaedic Journal, vol. 11, pp. 119-126, 1991.
[22] A.D.A.M., Inc.
[23] J. G. Webster, The measurement, instrumentation, and sensors handbook. Springer, 1999.
[24] Tao Dai and Andy Adler, “Blood Impedance Characterization from Pulsatile Measurements,” in Electrical and Computer Engineering, 2006. CCECE '06. Canadian Conference on, pp. 983-986, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw