進階搜尋


下載電子全文  
系統識別號 U0026-2308201115153200
論文名稱(中文) Huh-7細胞剔除粒線體NADH運輸器-檸檬酸之研究 : 甘胺酸之效用
論文名稱(英文) Silencing of the mitochondrial NADH shuttle component aspartate-glutamate carrier AGC2/citrin in Huh-7 cells : Effects of glycine treatment
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系碩博士班
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 99
學期 2
出版年 100
研究生(中文) 葉俐婷
研究生(英文) Li-Ting Yeh
學號 T36981037
學位類別 碩士
語文別 英文
論文頁數 76頁
口試委員 口試委員-徐麗君
口試委員-蔡曜聲
口試委員-黃智生
指導教授-謝淑珠
中文關鍵字 檸檬素  精胺丁二酸合成酵素  瓜胺酸血症  甘胺酸 
英文關鍵字 Citrin  argininosuccinate synthetase  citrullinemia  glycine 
學科別分類
中文摘要 蘋果酸-天門冬胺酸路徑在維持細胞能量恆定當中扮演重要的角色,藉由其作用使細胞質nicotinamide adenine dinucleotide (NADH)通過粒線體內膜進入粒線體進行氧化作用。檸檬素為一主要在肝臟中表現的粒線體天門冬胺酸-穀胺酸鹽載體蛋白,其在蘋果酸-天門冬胺酸NADH路徑以及尿素,蛋白質和核酸的合成扮演著重要的角色。檸檬素缺乏會造成第二型的瓜胺酸血症,這類的病患被檢測出肝臟精胺丁二酸合成酵素缺失並且也伴隨著細胞質NAD+/NADH比例下降及氧化壓力的上升。因此本篇研究的目的是利用層析串聯質譜儀液相建立一可同時測定細胞質NAD+及NADH 濃度的方法。此外,用檸檬素基因的shRNA抑制Huh-7細胞檸檬素表現或用化學藥物aminooxyacetate (AOA) 阻斷蘋果酸-天門冬胺酸路徑,探討其對細胞造成的影響;是否給予甘胺酸,精胺酸或是丙酮酸可以保護細胞。並進一步探討Citrin缺陷所造成的肝臟精胺丁二酸合成酵素缺失的機制。研究中利用流式細胞儀偵測Rhodamine 123的螢光表現呈現粒線體膜電位的變化;利用Annexin V,propidium iodide (PI)的染色及測定caspase-3的活性來評估細胞凋亡程度。氧化壓力則利用高效液相層析儀檢測脂質過氧化物malondialdehyde (MDA);以及以螢光探針2,7-dichlorofluorescin dictate (DCFH-DA)偵測細胞內氧化自由基含量。細胞質的精胺丁二酸合成酵素及粒線體檸檬素則以西方墨點法測定。所建立的NAD+ NADH方法之線性範圍分別為0.05 ~ 25 μmol/L及0.05 ~ 10 μmol/L。測定之不精密度(CV%)皆小於6%,NAD+平均回收率為101.7%;NADH為118.3%。檸檬素缺失會造成MDA上升(對照組細胞0.18±0.02 μmol/g vs. 檸檬素缺失細胞0.25±0.02 μmol/g, p<0.05),caspase-3活性及細胞凋亡的增加,粒線體膜電位降低,細胞質NAD+/NADH比值(2.44±0.06 vs. 1.83±0.10, p<0.005)下降並伴隨細胞質精胺丁二酸合成酵素表現降低。給予甘胺酸,精胺酸或是丙酮酸後皆可以有效降低細胞凋亡,並且回復細胞質精胺丁二酸合成酵素表現,粒線體膜電位,細胞質NAD+/NADH比值。另外,給予甘胺酸後可降低檸檬素缺失致成的MDA之上升。AOA的給予也會使MDA上升(正常細胞0.16±0.01 μmol/g vs. AOA-細胞0.31±0.02 μmol/g, p<0.0005),caspase-3活性及細胞凋亡上升,細胞質NAD+/NADH比值(2.72±0.30 vs. 2.00±0.15, p<0.05)及粒線體膜電位降低。AOA處理所致成的粒線體膜電位,caspase-3活性及細胞凋亡在給予甘胺酸,精胺酸或是丙酮酸皆可以明顯回復。綜合以上結果,甘胺酸具有可減緩氧化壓力,降低細胞凋亡,維持粒線體膜電位及增加細胞質精胺丁二酸合成酵素的表現。甘胺酸可能可以做為檸檬素缺乏病患的新治療法。
英文摘要 Malate-aspartate shuttle (MAS) plays an important role in equilibrating the cellular bioenergetic states by transferring cytosolic NADH equivalent across the inner mitochondrial membrane into the mitochondria for oxidation. Citrin, encoded by SLC25A13, is a liver-type mitochondrial aspartate-glutamate carrier. It plays an important role in malate-aspartate nicotinamide adenine dinucleotide (NADH) shuttle, and the synthesis of urea, protein and nucleotide. Citrin deficiency results in type II citrullinemia (CTLN2). Patients with CTLN2 are characterized by liver-specific argininosuccinate synthetase (ASS) deficiency, a decreased cytosolic nicotinamide adenine dinucleotide (NAD) to NADH ratio and increased oxidative stress. This study aimed to establish a method for simultaneous determination of NAD+ and NADH concentration by LC-tandem mass. Furthermore, we investigated the effects of genetic silencing of citrin by SLC25A13 shRNA or chemically shut-down of MA shuttle by aminooxyacetate (AOA) on Huh-7 cells; whether glycine, arginine or pyruvate treatment would reverse the changes. The mechanism of citrin deficiency–induced ASS expression would be further evaluated. Cells were examined for mitochondrial membrane potential (MMP) using the fluorescent dye Rhodamine 123, and cell apoptosis level by staining of Annexin V and propidium iodide (PI) by flow cytometry and detecting of caspase-3 activity. Oxidative stress was examined by malondialdehyde (MDA), a lipid peroxidation indicator, by high performance liquid chromatography, and intracellular hydrogen peroxide using H2O2-sensitive fluorescent probe, 2',7'- dichlorofluorescin diacetate (DCFH-DA), respectively. Cytosolic ASS and mitochondrial citrin protein were measured by western blotting. The imprecision (CV%) were <6%. The average recovery of NAD+ was 101.7%, NADH was 118.3%. Compared to control cells, citrin-KD cells showed increased MDA (0.18±0.02 μmol/g vs. 0.25±0.02 μmol/g, p<0.05), caspase-3 activity and cell apoptosis level. Furthermore, decreased MMP, cytosolic NAD+/NADH ratio (2.44±0.06 vs. 1.832±0.1, p<0.005) and cytosolic ASS expression were also seen in citrin-KD cells. The increase of apoptosis and decrease of MMP, cytosolic ASS expression, cytosolic NAD+/NADH ratio were restored with glycine, arginine or pyruvate treatments in citrin-KD cells. Furthermore, glycine treatment reduced the citrin-KD induced MDA increase. AOA-treated cells also showed increased MDA (0.16±0.01 μmol/g vs. 0.31±0.02 μmol/g, p<0.0005), caspase-3 activity and cell apoptosis, decreased MMP and cytosolic NAD+/NADH ratio (2.72±0.30 vs. 2.00±0.15, p<0.05). The decreased MMP and increased caspase-3 activity and apoptosis level induced by AOA treatment were recovered by glycine, arginine or pyruvate treatment. Taken together, glycine has the potential in decreasing the oxidative stress and apoptosis, maintaining the mitochondrial membrane potential and increasing ASS expression. Glycine treatment may be a new therapeutic strategy for patients with CTLN2.
論文目次 Abstract (in Chinese)…………………………………………………………. I
Abstract (in English)………………………………………………………..... III
Acknowledgement…………………………………………………………… V
Index…………………………………………………………………………. VII
Table list……………………………………………………………………… IX
Figure list…………………………………………………………………….. X
Appendix list…………………………………………………………………. XII
Introduction
Citrullinemia............................................................................................. 1
Type I citrullinemia................................................................................... 1
Citrin deficiency………………………………………………………...... 2
Mitochondria and citrin deficiency………………………………………. 3
Oxidative stress and citrin deficiency…………………………………..... 4
NADH and citrin deficiency…………………………………………..... 5
Apoptosis and citrin deficiency………………………………………..... 6
Non-alcoholic fatty liver disease and citrin deficiency………………..... 6
Therapeutic strategies for type II citrin deficiency patients…………….. 7
Effects of arginine……………………………………………………..... 7
Effects of pyruvate……………………………………………………….. 8
Effects of glycine……………………………………………………….... 9
Action of aminooxyacetate…………………………………………......... 9
Aims of this study……………………………………………………………..... 11

Materials and methods
1. Cell culture……………………………………………………….. 12
2. Retrovirus-mediated citrin-knockdown stable clone cells………..... 12
3. Collection of cell cytosolic and mitochondrial fraction…………... 13
4. Total protein analysis……………………………………………… 14
5. Western blotting……………………………………………………. 15
6. NAD+ and NADH concentrations by LC-MS/MS detection………. 18
7. MDA by HPLC with fluoresence detection………………………. 20
8. ROS detection by 2',7'-dichlorofluorescin diacetate (DCFH-DA)…. 22
9. Measurement of MMP…………………………………………….. 22
10. Apoptosis by using Annexin V and propidium iodide (PI)……….. 22
11. Measurement of caspase-3activity…………………………………. 23
12. Statistical analysis…………………………………………………. 24
Results……………………………………………………………………….. 25
Discussion…………………………………………………………………...... 31
Conclusion…………………………………………………………………..... 36
References………………………………………………………………….... 37
Tables………………………………………………………………………... 45
Figures……………………………………………………………………….. 46
Appendixes…………………………………………………………………... 68
參考文獻 1. Saheki T, Kobayashi K, Inoue I. Hereditary disorders of the urea cycle in man: Biochemical and molecular approaches. Rev Physiol Biochem Pharmacol 1987;108:21-68
2. Marquis-Nicholson R, Glamuzina E, Prosser D, Wilson C, Love DR. Citrullinemia type I: Molecular screening of the ASS1 gene by exonic sequencing and targeted mutation analysis. Genet Mol Res 2010;9:1483-1489
3. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 2002;47:333-341
4. Saheki T, Kobayashi K, Iijima M, Moriyama M, Yazaki M, Takei Y, Ikeda S. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res 2005;33:181-184
5. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset type II citrullinemia (CTLN2). Intern Med 2005;44:188-195
6. Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, Iinuma K, Saheki T. Neonatal presentation of adult-onset type II citrullinemia. Hum Genet 2001;108:87-90
7. Saheki T, Inoue K, Tushima A, Mutoh K, Kobayashi K. Citrin deficiency and current treatment concepts. Mol Genet Metab 2010;100 Suppl 1:S59-64
8. Kobayashi K, Shaheen N, Kumashiro R, Tanikawa K, O'Brien WE, Beaudet AL, Saheki T. A search for the primary abnormality in adult-onset type II citrullinemia. Am J Hum Genet 1993;53:1024-1030
9. Lin JT, Hsiao KJ, Chen CY, Wu CC, Lin SJ, Chou YY, Shiesh SC. High resolution melting analysis for the detection of SLC25A13 gene mutations in taiwan. Clin Chim Acta 2011;412:460-465
10. Kobayashi K, Bang Lu Y, Xian Li M, Nishi I, Hsiao KJ, Choeh K, Yang Y, Hwu WL, Reichardt JK, Palmieri F, Okano Y, Saheki T. Screening of nine SLC25A13 mutations: Their frequency in patients with citrin deficiency and high carrier rates in asian populations. Mol Genet Metab 2003;80:356-359
11. Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, Lei L, Kawabe K, Taura S, Yang Y, Liu TT, Chiang SH, Hsiao KJ, Lau YL, Tsui LC, Lee DH, Saheki T. Frequency and distribution in east asia of 12 mutations identified in the SLC25A13 gene of japanese patients with citrin deficiency. J Hum Genet 2005;50:338-346
12. Kobayashi K, Horiuchi M, Saheki T. Pancreatic secretory trypsin inhibitor as a diagnostic marker for adult-onset type II citrullinemia. Hepatology 1997;25:1160-1165
13. Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, Li MX, Ushikai M, Iijima M, Kondo I, Saheki T. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 2000;107:537-545
14. Palmieri F. Diseases caused by defects of mitochondrial carriers: A review. Biochim Biophys Acta 2008;1777:564-578
15. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 2001;20:5060-5069
16. Sugano T, Nishimura K, Sogabe N, Shiota M, Oyama N, Noda S, Ohta M. Ca2+-dependent activation of the malate-aspartate shuttle by norepinephrine and vasopressin in perfused rat liver. Arch Biochem Biophys 1988;264:144-154
17. Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003;10:709-717
18. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007;43:477-503
19. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956;11:298-300
20. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. J Assoc Physicians India 2004;52:794-804
21. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002;80:780-787
22. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787-795
23. Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 2007;145:1233-1248
24. Stadtman ER. Protein oxidation and aging. Science 1992;257:1220-1224
25. Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V. Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 1997;27:637-644
26. Rama Rao KV, Jayakumar AR, Norenberg MD. Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 2005;47:31-38
27. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 2003;981:193-200
28. Prestes CC, Sgaravatti AM, Pederzolli CD, Sgarbi MB, Zorzi GK, Wannmacher CM, Wajner M, Wyse AT, Dutra Filho CS. Citrulline and ammonia accumulating in citrullinemia reduces antioxidant capacity of rat brain in vitro. Metab Brain Dis 2006;21:63-74
29. Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, Auwerx J. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 2011;13:450-460
30. Zhang Z, Blake DR, Stevens CR, Kanczler JM, Winyard PG, Symons MC, Benboubetra M, Harrison R. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: The role of nadh as an electron donor. Free Radic Res 1998;28:151-164
31. Griendling KK, Sorescu D, Ushio-Fukai M. Nad(p)h oxidase: Role in cardiovascular biology and disease. Circ Res 2000;86:494-501
32. Moriyama M, Li MX, Kobayashi K, Sinasac DS, Kannan Y, Iijima M, Horiuchi M, Tsui LC, Tanaka M, Nakamura Y, Saheki T. Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice. J Hepatol 2006;44:930-938
33. Xie W, Xu A, Yeung ES. Determination of NAD+ and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis. Anal Chem 2009;81:1280-1284
34. Cuello S, Goya L, Madrid Y, Campuzano S, Pedrero M, Bravo L, Camara C, Ramos S. Molecular mechanisms of methylmercury-induced cell death in human hepg2 cells. Food Chem Toxicol 2010;48:1405-1411
35. Claessens YE, Dhainaut JF. Diagnosis and treatment of severe sepsis. Crit Care 2007;11 Suppl 5:S2
36. Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 2001;106:62-70
37. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139-176
38. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and sirt1 activity in wistar rats. PLoS One 2011;6:e19194
39. Sawada S, Kinjo T, Makishi S, Tomita M, Arasaki A, Iseki K, Watanabe H, Kobayashi K, Sunakawa H, Iwamasa T, Mori N. Downregulation of citrin, a mitochondrial AGC, is associated with apoptosis of hepatocytes. Biochem Biophys Res Commun 2007;364:937-944
40. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology 2006;43:S99-S112
41. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001;120:1183-1192
42. Sass DA, Chang P, Chopra KB. Nonalcoholic fatty liver disease: A clinical review. Dig Dis Sci 2005;50:171-180
43. Komatsu M, Yazaki M, Tanaka N, Sano K, Hashimoto E, Takei Y, Song YZ, Tanaka E, Kiyosawa K, Saheki T, Aoyama T, Kobayashi K. Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol 2008;49:810-820
44. Takagi H, Hagiwara S, Hashizume H, Kanda D, Sato K, Sohara N, Kakizaki S, Takahashi H, Mori M, Kaneko H, Ohwada S, Ushikai M, Kobayashi K, Saheki T. Adult onset type II citrullinemia as a cause of non-alcoholic steatohepatitis. J Hepatol 2006;44:236-239
45. Tsai CW, Yang CC, Chen HL, Hwu WL, Wu MZ, Liu KL, Wu MS. Homozygous SLC25A13 mutation in a taiwanese patient with adult-onset citrullinemia complicated with steatosis and hepatocellular carcinoma. J Formos Med Assoc 2006;105:852-856
46. Dimmock D, Kobayashi K, Iijima M, Tabata A, Wong LJ, Saheki T, Lee B, Scaglia F. Citrin deficiency: A novel cause of failure to thrive that responds to a high-protein, low-carbohydrate diet. Pediatrics 2007;119:e773-777
47. Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 1979;2:452-454
48. Brusilow SW, Maestri NE. Urea cycle disorders: Diagnosis, pathophysiology, and therapy. Adv Pediatr 1996;43:127-170
49. Brusilow SW. Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest 1984;74:2144-2148
50. Tan HH, Chow WC, Lim KH, Wan WK, Chung AY, Cheow PC, Tan CK. Liver transplantation in an adult with citrullinaemia type 2. J Transplant 2011;2011:176370
51. Shigeta T, Kasahara M, Kimura T, Fukuda A, Sasaki K, Arai K, Nakagawa A, Nakagawa S, Kobayashi K, Soneda S, Kitagawa H. Liver transplantation for an infant with neonatal intrahepatic cholestasis caused by citrin deficiency using heterozygote living donor. Pediatr Transplant 2010;14:E86-88
52. Stechmiller JK, Childress B, Cowan L. Arginine supplementation and wound healing. Nutr Clin Pract 2005;20:52-61
53. Bachmann C, Colombo JP. Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Eur J Pediatr 1980;134:109-113
54. Thenmozhi AJ, Subramanian P. Antioxidant potential of momordica charantia in ammonium chloride-induced hyperammonemic rats. Evid Based Complement Alternat Med 2011; doi:10.1093/ecam/nep227
55. Pignitter M, Gorren AC, Nedeianu S, Schmidt K, Mayer B. Inefficient spin trapping of superoxide in the presence of nitric-oxide: Implications for studies on nitric-oxide synthase uncoupling. Free Radic Biol Med 2006;41:455-463
56. Kawano H, Motoyama T, Hirai N, Kugiyama K, Yasue H, Ogawa H. Endothelial dysfunction in hypercholesterolemia is improved by l-arginine administration: Possible role of oxidative stress. Atherosclerosis 2002;161:375-380
57. Harper HA, Najarian JS. A clinical study of the effect of arginine on blood ammonia. Am J Med 1956;21:832-842
58. Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, Roe CR, Saudubray JM. Pyruvate carboxylase deficiency: Clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 2005;84:305-312
59. Dobsak P, Courderot-Masuyer C, Zeller M, Vergely C, Laubriet A, Assem M, Eicher JC, Teyssier JR, Wolf JE, Rochette L. Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia. J Cardiovasc Pharmacol 1999;34:651-659
60. Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M, Horiuchi M, Robinson BH, Kobayashi K, Saheki T, Tsui LC. SLC25A13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia. Mol Cell Biol 2004;24:527-536
61. Sheline CT, Behrens MM, Choi DW. Zinc-induced cortical neuronal death: Contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J Neurosci 2000;20:3139-3146
62. Mutoh K, Kurokawa K, Kobayashi K, Saheki T. Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis 2008
63. Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ. L-glycine: A novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 2003;6:229-240
64. Kingsbury KJ, Kay L, Hjelm M. Contrasting plasma free amino acid patterns in elite athletes: Association with fatigue and infection. Br J Sports Med 1998;32:25-32; discussion 32-23
65. Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:Amino acid N-acyltransferase. J Biol Chem 1994;269:19375-19379
66. Alexi T, Hughes PE, van Roon-Mom WM, Faull RL, Williams CE, Clark RG, Gluckman PD. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of huntington's disease. Exp Neurol 1999;159:84-97
67. Rose ML, Madren J, Bunzendahl H, Thurman RG. Dietary glycine inhibits the growth of b16 melanoma tumors in mice. Carcinogenesis 1999;20:793-798
68. Giambelluca MS, Gende OA. Effect of glycine on the release of reactive oxygen species in human neutrophils. Int Immunopharmacol 2009;9:32-37
69. Mauriz JL, Matilla B, Culebras JM, Gonzalez P, Gonzalez-Gallego J. Dietary glycine inhibits activation of nuclear factor kappa B and prevents liver injury in hemorrhagic shock in the rat. Free Radic Biol Med 2001;31:1236-1244
70. den Eynden JV, Ali SS, Horwood N, Carmans S, Brone B, Hellings N, Steels P, Harvey RJ, Rigo JM. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009;2:9
71. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003;66:1499-1503
72. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999;283:981-985
73. John RA, Charteris A. The reaction of amino-oxyacetate with pyridoxal phosphate-dependent enzymes. Biochem J 1978;171:771-779
74. Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 1987;930:173-178
75. Lopez-Alarcon L, Eboli ML. Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the k-562 human leukemia cell line. Cancer Res 1986;46:5589-5591
76. Lee YJ, Kang IJ, Bunger R, Kang YH. Enhanced survival effect of pyruvate correlates mapk and NF-kappa B activation in hydrogen peroxide-treated human endothelial cells. J Appl Physiol 2004;96:793-801
77. Williamson JR, Jakob A, Refino C. Control of the removal of reducing equivalents from the cytosol in perfused rat liver. J Biol Chem 1971;246:7632-7641
78. Nielsen TT, Stottrup NB, Lofgren B, Botker HE. Metabolic fingerprint of ischaemic cardioprotection: Importance of the malate-aspartate shuttle. Cardiovasc Res 2011; doi:10.1093/cvr/cvr051
79. McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, Borrelli MJ, Morrow JD, Freeman ML. Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 1997;171:143-151
80. Satrustegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 2007;87:29-67
81. Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, Pennisi LF, Morra I, Ciccarelli E, Melcarne A, Bartoletti-Stella A, Salfi N, Tallini G, Martinuzzi A, Carelli V, Attimonelli M, Rugolo M, Romeo G, Gasparre G. The genetic and metabolic signature of oncocytic transformation implicates hif1alpha destabilization. Hum Mol Genet 2010;19:1019-1032
82. McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, Borrelli MJ, Morrow JD, Freeman ML. Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 1997;171:143-151
83. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: Involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81 Suppl 1:S20-26
84. Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009;10:481-494
85. Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J Biol Chem 2005;280:18361-18367
86. Feillet F, Merten M, Battaglia-Hsu SF, Rabier D, Kobayashi K, Straczek J, Brivet M, Favre E, Gueant JL. Evidence of cataplerosis in a patient with neonatal classical galactosemia presenting as citrin deficiency. J Hepatol 2008;48:517-522
87. Zafra F, Gimenez C. Glycine transporters and synaptic function. IUBMB Life 2008;60:810-817
88. Wheeler M, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J 2000;14:476-484
89. Qu W, Ikejima K, Zhong Z, Waalkes MP, Thurman RG. Glycine blocks the increase in intracellular free Ca2+ due to vasoactive mediators in hepatic parenchymal cells. Am J Physiol Gastrointest Liver Physiol 2002;283:G1249-1256
90. Wolin MS. Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 2009;296:H539-549
91. Han YJ, Kwon YG, Chung HT, Lee SK, Simmons RL, Billiar TR, Kim YM. Antioxidant enzymes suppress nitric oxide production through the inhibition of NF-kappa B activation: Role of H2O2 and nitric oxide in inducible nitric oxide synthase expression in macrophages. Nitric Oxide 2001;5:504-513
92. Kim JS, He L, Qian T, Lemasters JJ. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med 2003;3:527-535
93. Froh M, Thurman RG, Wheeler MD. Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes. Am J Physiol Gastrointest Liver Physiol 2002;283:G856-863
94. Ikejima K, Iimuro Y, Forman DT, Thurman RG. A diet containing glycine improves survival in endotoxin shock in the rat. Am J Physiol 1996;271:G97-103
95. Schemmer P, Bradford BU, Rose ML, Bunzendahl H, Raleigh JA, Lemasters JJ, Thurman RG. Intravenous glycine improves survival in rat liver transplantation. Am J Physiol 1999;276:G924-932
96. Wang YS, Yan YH, Zou XF. Protective effect of glycine on liver injury during liver transplantation. Chin Med J (Engl) 2010;123:1931-1938
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw