進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201110563800
論文名稱(中文) 應用時間反轉法在背景噪音環境和無響環境下噪音特性之研究
論文名稱(英文) Research on the applications of Time Reversal Method for acoustic properties in noise environment and in anechoic environment.
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 李長青
研究生(英文) Chang-Cing-Lee
學號 P16981291
學位類別 碩士
語文別 中文
論文頁數 142頁
口試委員 指導教授-涂季平
口試委員-沈聖智
口試委員-劉雲輝
中文關鍵字 時間反轉法  陣列麥克風  環境脈衝響應函數  相關性係數  訊雜比 
英文關鍵字 Time Reversal Method  Microphone Array  Environment Impulse Response Function  Correlation Coefficient  Signal-to-Noise Ratio 
學科別分類
中文摘要 摘要
本論文研究目的,是應用時間反轉法根據互易性原理使訊號聚焦於原聲源位置之特性,配合陣列麥克風達到提升訊雜比之功效。同時由於接收訊號包含越多反射訊號,聚焦效果越佳,因此透過增加反射板數量提高抗噪效果,期望於環境噪音明顯之環境下進行產品聲音相關量測之結果,可與無響室中測試結果相近,進而建構一套抗噪量測系統。本文理論部份包含時間反轉理論推導,以及求解環境脈衝響應函數之方法;軟體數值模擬使用聲學分析軟體LMS Virtual.LAB Acoustic,繪製不同形狀、尺寸、與數量的反射板聲音邊界網格並給定點聲源(待測物)和麥克風佈放位置後,計算聲場響應獲得各麥克風之頻域訊號,再匯入Matlab執行反傅立葉轉換並據此求得時域環境脈衝響應函數,模擬時間反轉法的聚焦效果,最後利用相關性係數及訊雜比作為效果量化的指標;實驗部分則根據模擬結果,選擇抗噪效果最佳之反射裝置,於無響室和迴響室中使用陣列麥克風加圓管反射板進行風扇聲源的量測實驗,結果分別可提昇15.53dB與14.12dB,使聲音清晰度和品質大幅提升,明顯抑制環境迴響及雜訊干擾,證明本研究所架構之抗噪量測系統成效。
英文摘要 Abstract
The purpose of this research is to enhance signal-to-noise ratio using microphone array via time reversal method, which lead to focus signal at source location based on reciprocity of wave equation. Furthermore, a new anti-noise measurement system is proposed to obtain similar sound test results of the product whether in anechoic chamber or in noisy environment via increasing the number of reflection plate for better focusing effect produced. The theory part of this thesis includes the derivation of time reversal method and the procedure to obtain environment impulse response function. To complete numerical simulation, a various shape, size, and number of reflection plate were designed and meshed under LMS Virtual. LAB Acoustic. After setting the position of point source and microphones, the frequency domain response of each source-microphone path is calculated and then converted to time domain via Inverse Fast Fourier Transform under Matlab to simulate the process of time reversal method. Finally, the results were quantitated by cross correlation coefficient and signal-to-noise ratio as indicator. Experiments are set according to the simulation configuration with the best anti-noise effect. The measurement tests using circular tube reflection plate and microphone array are conducted in anechoic chamber and reverberant chamber, and the enhancements of signal-to-noise ratio are 15.53dB and 14.12dB respectively. The results show environment reverberation and noise interference are reduced to verify the effect of anti-noise measurement system.
論文目次 目錄
摘要............... .......................I
Abstract.................................II
致謝.....................................III
目錄......................................IV
表目錄.................................. VII
圖目錄..................................VIII
附錄圖目錄.................................XV
符號表....................................XX
第一章緒論..................................1
1.1研究動機與目的............................1
1.2相關文獻回顧........................3
1.3論文架構...........................8
第二章理論基礎...............................9
2.1時間反轉法理論介紹及推導..............9
2.2求解環境脈衝響應函數.................11
第三章電腦軟體模擬分析........................16
3.1前言..............................16
3.2完整模擬流程........................17
3.3LMS Virtual.LAB Acoustic計算環境脈衝響應函數...19
3.4Matlab時間反轉法模擬..........................32
3.4.1相關性係數(correlation coefficient).....35
3.4.2訊雜比(signal to noise ratio,SNR)......36
3.4.3加各種反射板條件下之時間反轉法模擬...........39
3.4.3.1加下反射板之時間反轉法模擬............39
3.4.3.2加上下兩反射板之時間反轉法模擬.........45
3.4.3.3加上下前後四反射板之時間反轉法模擬......56
3.4.3.4加圓管反射板之時間反轉法模擬...........66
3.5加各種反射板之時間反轉法成效比較...................77
第四章實驗架構與數據分析..................................88
4.1 前言..............................................88
4.2實驗儀器與設備.................................88
4.3實驗架構與步驟.................................90
4.4實驗操作與結果分析比較...........................95
4.4.1實驗操作.................................95
4.4.2實驗結果分析比較...................................97
第五章結論與未來展望....................................107
5.1 結論.......................................107
5.2 未來展望....................................109
參考文獻..............................................110
附錄.................................................113
參考文獻 參考文獻
[1] D. R. Jackson and D. R. Dowling, “Phase conjugation in underwater
acoustics”, J.A.S.A. 89, pp. 171-181, 1991.
[2] D. Caesarea and M. Fink, “Time Reversal of Ultrasonic Field, PartIII: Theory of the Closed Time-Reversal Cavity”, IEEE Trans. UFFC.,
567-578, Sep 1992.
[3] D. Caesarea and M. Fink, “Focusing with plane time-reversal mirrors: an efficient alternative to closed cavities”, J.A.S.A., 2373-2386, Oct 1993.
[4] N. Charkroun, M. Fink and F. Wu, “Ultrasonic Non-Destructive Testing with Time Reversal Mirrors”, IEEE Ultrasonic Symposium. Proc., pp.809-814, 1992.
[5] N. Charkroun, F. Wu and M. Fink, “Improvement of Time Reversal Mirror in Detection of Small Cracks and Metallurgical Defects in Sample with Ultrasonic Speckles Noise Level”, IEEE Ultrasonic Symposium. Proc., pp.705-710, 1993.
[6] N. Charkroun, M. Fink and F. Wu, “Time Reversal Processing in Ultrasonic Non-Destructive Testing”, IEEE Trans. UFFC., pp.1087-1098, 1995.
[7] J. L. Thomas, F. Wu and M. Fink, “Self Focusing on Extend Objects with Time Reversal Mirror, Applications to Lithotripsy”, IEEE Ultrasonic Symposium. Proc., pp.1809-1813, 1994.
[8] N. Chakroun, M. Fink, and F. Wu, “Time reversal processing in ultrasonic non destructive testing”, IEEE Trans. Uffc., 1087-1098, 1995.
[9] R. K. Ing and M. Fink, “Time Reversal Lamb Wave”, IEEE UFFC, Vol.45, No.4, pp.1032-1043, 1998.
[10] J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physical using atime-reversal mirror and a novel acoustic sink”, Physical
Review Letters, Vol.89(12), 124301, 2002.
[11] H. W. Park, H. Sohn, K. H. Law and C. R. Farrar,“Time Reversal Active Sensing for Health Monitoring of A Composite Plate”,Journal of Soundand Vibration, 302, pp.50-60, 2006.
[12] H. Sohn, H. W. Park, K. H. Law and C. R. Farrar, “Damage Detection in Composite Plate by Using An Enhanced Time Reversal method”, Journal of Aerospace Engineering, pp.141-151, July 2007.
[13] G. Lerosey, J. de Rosny, A. Tourin and M. Fink, “Focusing beyond the diffraction limitwith far-field time reversal”, Science, 315, 1120-1122,
2007.
[14] S. G. Conti, P. Roux and W. A. Kuperman, “Near-field time-reversal
amplification”,J.A.S.A, Vol.121(6), 3602-3606, 2007.
[15] 林明宏,“時間反轉陣列之聚焦解析度分析”,國立台灣大學工程科學及海洋工程研究所碩士論文,中華民國九十五年五月。
[16] 邱永盛,“運用被動相位共軛等化理論於淺海內波環境之通訊成效分析”, 國立台灣大學工程科學及海洋工程研究所博士論文, 中華民國
九十七年六月。
[17] 林聖哲,“應用時間反轉法與微麥克風陣列於手機裝置之抗噪技術研究”,國立成功大學系統及船舶機電工程學系研究所碩士論文,中華民國九十八年六月。
[18] 吳柏賢,“麥克風陣列訊號處理於聲源訊號分離與聲場重建之應用研究”,國立成功大學系統及船舶機電工程學系研究所博士論文,中華民國九十九年七月。
[19] M. Callegari, F. Cannella, Lumped parameter model of timing belt transmissions, Dipartimento di Meccanica, Università di Ancona, 2001.
[20] Charles D. Glynn, Vibro-acoustic prediction of low-range planetary gear noise of an automotive transfer case, NOISE-CON 2005.
[21] R. Narayanaswamy& C.D. Glynn, Vibro-Acoustic Prediction of Low-Range Planetary Gear Noise of an Automotive Transfer Case, Borg Warner Morse Tec Noise-con,2005. 
[22] Z.S. Liu,C. Lu,Y.Y Wang, H.P. Lee , Y.K. Koh ,and K.S. Lee, Prediction of noise inside tracked vehicles, Applied Acoustics 67 (2006) 74-91.
[23] R. Citarella,L. Federico,A.Cicatiello,and Modal acoustic transfer vector approach in a FEM-BEM vibro-acoustic analysis, Engineering Analysis with Boundary Element 31(2007) 248-258.
[24] 王星貿,“近似聲源法計算內部聲場之研究”,國立成功大學造船暨船舶機械工程研究所碩士論文,中華民國八十七年六月。
[25] 許錦海,“電腦機殼噪音預估模式之建立”,國立台灣海洋大學系統工程暨造船學系研究所碩士論文,中華民國九十二年六月。
[26] 張世昌,“電腦風扇之振動與噪音之分析”,國立台灣海洋大學系統工程暨造船學系研究所碩士論文,中華民國九十二年六月。
[27] 林益呈,“靜音鏈傳動系統之聲場模擬分析”,國立成功大學系統及船舶機電工程學系研究所碩士論文,中華民國九十八年六月。
[28] 李仁傑,“鈸型結構壓電換能器之聲場模擬分析與實作”,國立成功大學系統及船舶機電工程學系研究所碩士論文,中華民國九十八年六月。
[29] 羅一揚,“鏈傳動系統之聲場模擬流程與修正方法”,國立成功大學系統及船舶機電工程學系研究所碩士論文,中華民國九十九年六月。
[30] P.A. Nelson,S.H. Yoon.,Eatimation of acoustic source strength by inverse methods Part I,conditioning of the inverse problem,Sound and Vibration 233 (4) (2000) 643-668.
[31] S.H. Yoon, P.A. Nelson.,Eatimation of acoustic source strength by inverse methods Part II, experimental investigation of methods for choosing regularization parameter, Sound and Vibration 233 (4) (2000) 669-705.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw