進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2308201110560300
論文名稱(中文) 植入陽極化塗層之植體於卵巢切除之兔子模組可促進骨整合
論文名稱(英文) Anodized Coating Improves the Osseointegration of Titanium Implants in an Ovariectomized Rabbit Model
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 99
學期 2
出版年 100
研究生(中文) 蔡淳淳
研究生(英文) Chun-Chun Tsai
學號 T46981047
學位類別 碩士
語文別 英文
論文頁數 48頁
口試委員 指導教授-袁國
指導教授-李澤民
口試委員-曾春祺
口試委員-黃啓洲
中文關鍵字 植體表面  骨質疏鬆  骨整合 
英文關鍵字 implant surfaces  osteoporosis  osseointegration 
學科別分類
中文摘要 隨著平均年歲增加,越多人口同時患有牙齒喪失及骨質疏鬆等問題。目前臨床上廣泛使用骨整合的植體來取代喪失的牙齒。已有許多文獻顯示具骨質疏鬆之骨頭,其骨整合速率會減緩,並增加贗復植體之失敗率。在許多表面處理的方法中,鈦金屬陽極氧化處理(TAO)顯示具有極佳的生物相容性。故本實驗將觀察,於健康及具骨質疏鬆的動物模組中,植入以微弧氧化處理披覆鈣磷之植體其骨整合情形。
將五個月大的紐西蘭兔進行卵巢切除,並餵食0.5%低鈣飲食來建立骨質疏鬆兔子模組,經由10週時之脛骨組織切片表現出差異來確立此模組。之後於兔子脛骨上植入不同表面之植體,分別是:陽極氧化處理 (TAO) 及機械加工之植體。植入後六星期,我們將切下所有兔子右脛骨來製作組織切片以比較植體與骨頭接觸情形 (BIC),左脛骨則進行功能性扭力測試 (RTV)且拍攝微米級斷層掃描以確認骨質密度。
研究結果顯示,實驗組骨密度 (BMD)平均值低於控制組的骨密度一個標準差以下。根據定義,實驗組兔子可診斷為骨質缺失(Osteopenia)。根據扭力測試及骨頭與植體的接觸結果,不論於控制組或實驗組,經TAO 表面處理之微植體皆能表現出較好之骨整合情形。但針對相同表面處理的植體來說,在控制組及實驗組之間於術後六週時的骨整合程度並無差異。
因此,於臨床上來說,骨質缺失的病人並非植體手術之不適應症。而經特殊處理之粗糙表面植體,例如本實驗所使用之陽極氧化披覆鈣磷之植體則建議應用於這類骨質缺失的病人。
英文摘要 With augmentation in life expectancy, the number of people suffering from both osteoporosis and tooth loss increased. Osseointegrated dental implants are widely used as substitutes for missing teeth. Osteoporosis is characterized by the deterioration of the bone microarchitecture and reduction of the bone mass. Many literatures revealed that biomaterial osseointegration is slower in osteoporosis bones, and the rate of prosthetic device failure is increased in both dental and orthopaedic applications. Among many implant surface treatment, the anodizing coating treatment of titanium (Ti) alloy have a beneficial effect on the biocompatibility of the Ti6Al4V implants. We aimed to evaluate the effects of implants with anodizing coating on healthy and osteoporosis bones of rabbits and to find its utility in osteoporosis.
To establish the osteoporotic model, 5-month-old New Zealand rabbits were ovariectomized and fed a 0.5 % low calcium diet. The histological difference was noted on the 10 weeks biopsy from the rabbit tibia. Five test group rabbits were prepared to follow the above established protocol. Five sham-operated rabbits were used as the control group. Two different surface treatment implants, including titanium anodizing oxidation (TAO) and machine surface, were inserted into each tibia of the control and test rabbits. After six weeks of healing, the animals were sacrificed. The right tibia was segmented for comparison of bone to implant contact (BIC) and the left tibia for removal torque value (RTV) examination. Micro computed tomography of the tibia segment was taken for bone mineral density (BMD) measurement.
The average of BMD in the test group was 1 standard deviation less than that of the control group. By definition, the test group could be categorized as osteopenia. Besides, TAO microimplants could improve osseointegration in the control and test group comparing with machine microimplants, as revealed by histomorphometric examination and functional removal torque test. However, there was no significant difference between the control and test group in the same surface treatment implants. Within the parameters used in this animal model, BIC difference between osteopenia and healthy animal s were not observed in the postoperative period of 6 weeks.
These results do not necessarily indicate that the application of dental implants as a contraindication in patients with lower BMD. Rough surface implants, such as titanium anodizing oxidation are recommended to use.
論文目次 Table of contents
Chapter 1. Introduction 1
1.1 Background 1
1.1.1 Dental implants 1
1.1.2 Osteoporosis 2
1.1.3 Dental implants and osteoporosis 4
1.1.4 Implant surface 5
1.2 Motivation 8
1.3 Objective 9
Chapter 2. Materials and Methods 10
2.1 Titanium Alloy and Surface Treatment 11
2.1.1 Titanium alloy 11
2.1.2 Surface treatment 11
2.2 Surface characteristic analysis 12
2.2.1 Topographic observation by SEM 12
2.2.2 Roughness analysis 12
2.3 Animals study 12
2.3.1 Animals and anesthesia osteoporosis model preparation 12
2.3.2 Osteoporosis models preparation 13
2.3.3 Microimplant surgery procedure 13
2.3.4 Micro CT analysis 14
2.3.5 Removal torque value measurement 14
2.3.6 Histomorphometric analysis 15
2.4 Statistical analysis 15
Chapter 3. Results 17
3.1 Surface characteristic analysis 17
3.1.1 Topographic observation on SEM 17
3.1.2 Energy dispersive spectrometer (EDS) 17
3.1.3 Roughness analysis 17
3.2 Analysis of osteoporosis 17
3.2.1 Histological examination of the tibia 17
3.2.2 Micro CT analysis of bone mineral density 18
3.3 Removal torque value measurement 18
3.4 Histomorphometric Analysis of Bone to implant Contact 18
3.5 Correlation between bone to implant contact and removal torque value (RTV) 18
Chapter 4. Discussion 20
4.1 Study design 20
4.1.1 Bone mineral density measurement 20
4.1.2 Animal models 21
4.2 Surface characteristics analysis 23
4.3 Removal torque value measurement 24
4.4 Histomorphometric Analysis of Bone to Implant contact 25
Chapter 5. Conclusions 28
References 29

List of Tables
Table 1. Components of Ti6Al4V 34
Table 2.Bone mineral density (g/cm3) 34
Table 3. Removal torque values (RTV): Ncm 35
Table 4. Bone to implant contact (BIC): Percentage (%) 35

List of Figures
Figure 1. Study flow chart 36
Figure 2. Ovariectomy process. 37
Figure 3. Surgical process. 38
Figure 4. Microimplants. 39
Figure 5. Microimplant surface in SEM 40
Figure 6. EDS for different surface treatment 41
Figure 7. Roughness value 42
Figure 8. Histological findings of the tibia 43
Figure 9. Bone mineral density(BMD). 44
Figure 10. Removal torque values (RTV) 45
Figure 11. Histomorphometric results 46
Figure 12. Bone to implant contact (BIC). 47
Figure 13. Pearson’s correlation coefficient between BIC and RTV 48




參考文獻 References
Albrektsson, T., and Wennerberg, A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont, 17, 536-43 (2004).
Ali Gur, Kemal Nas, Onder Kayhan, Mesut Birol Atay, Gulseren Akyuz, Dilsad Sindal, Ramazan Akşit, Sema Oncel, Guzin Dilsen, and Remzi Cevik, E. A. The relation between tooth loss and bone mass in postmenopausal osteoporotic women in Turkey : a multicenter study. Journal of Bone and Mineral Metabolism 21, 43-47 (2003).
Alsaadi, G., Quirynen, M., Komárek, A., and Van Steenberghe, D. Impact of local and systemic factors on the incidence of late oral implant loss. Clinical Oral Implants Research, 19, 670-676 (2008).
August, M. Influence of estrogen status on endosseous implant osseointegration. Journal of Oral and Maxillofacial Surgery, 59, 1285-1289 (2001).
Azevedo, A., Carvalho, C., Figueiredo, C., Costa, L., Carvalho, L., and Sá, M. Titanium implants: A removal torque study in osteopenic rabbits. Indian Journal of Dental Research, 21, 349-352 (2010).
Ballard, P. A., Purdie, D. W., Langton, C. M., Steel, S. A., and Mussurakis, S. Prevalence of Osteoporosis and Related Risk Factors in UK Women in the Seventh Decade: Osteoporosis Case Finding by Clinical Referral Criteria or Predictive Model? Osteoporosis International, 8, 535-539 (1998).
Becker, W., Hujoel, P. P., Becker, B. E., and Willingham, H. Osteoporosis and implant failure: an exploratory case-control study. Journal of Periodontology 71, 625-631 (2000).
Bianchi, A., and Sanfilippo, F. Osteoporosis: The Effect on Maxillary Bone Resorption and Therapeutic Possibilities by Means of ImplantProstheses--A Literature Review and clinical Considerations The International Journal of Periodontics & Restorative Dentistry, 23, 447-457 (2003).
Brånemark, P.-I. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry, 50, 399-410 (1983).
Buser, D., Nydegger, T., Oxland, T., Cochran, D. L., Schenk, R. K., Hirt, H. P., Snétivy, D., and Nolte, L.-P. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs. Journal of Biomedical Materials Research, 45, 75-83 (1999).
Dennison, E., Yoshimura, N., Hashimoto, T., and Cooper, C. Bone loss in Great Britain and Japan: a comparative longitudinal study. Bone, 23, 379-382 (1998).
Fini, M., Giavaresi, G., Rimondini, L., and Giardino, R. Titanium alloy osseointegration in cancellous and cortical bone of ovariectomized animals: histomorphometric and bone hardness measurements. Int J Oral Maxillofac Implants, 17, 28-37 (2002).
Fini, M., Giavaresi, G., Torricelli, P., Borsari, V., Giardino, R., Nicolini, A., and Carpi, A. Osteoporosis and biomaterial osteointegration. Biomedicine & Pharmacotherapy, 58, 487-493 (2004).
Fujimoto, T., Niimi, A., Sawai, T., and Ueda, M. Effects of steroid-induced osteoporosis on osseointegration of titanium implants. Int J Oral Maxillofac Implants, 13, 183-9 (1998).
Glösel, B., Kuchler, U., Watzek, G., and Gruber, R. Review of Dental Implant Rat Research Models Simulating Osteoporosis or Diabetes. The International Journal of Oral & Maxillofacial Implants, 25, 516-524 (2010).
Hirai, T., Ishijima, T., Hashikawa, Y., and Yajima, T. Osteoporosis and reduction of residual ridge in edentulous patients. The Journal of Prosthetic Dentistry, 69, 49-56 (1993).
Jeffcoat, M. The Association Between Osteoporosis and oral bone loss. Journal of Periodontology, 76, 2125-2132 (2005).
Johansson, C. B., and Albrektsson, T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clinical Oral Implants Research, 2, 24-29 (1991).
Kanis, J. A., Melton, L. J., Christiansen, C., Johnston, C. C., and Khaltaev, N. The diagnosis of osteoporosis. Journal of Bone and Mineral Research, 9, 1137-1141 (1994).
Krall, E. A., Dawson-Hughes, B., Papas, A., and Garcia, R. I. Tooth loss and skeletal bone density in healthy postmenopausal women. Osteoporosis International, 4, 104-109 (1994).
Kribbs, P. J., Chesnut, C. H., Ott, S. M., and Kilcoyne, R. F. Relationships between mandibular and skeletal bone in an osteoporotic population. The Journal of Prosthetic Dentistry, 62, 703-707 (1989).
Kung, Kuan-chen. 鈦金屬陽極化表面處理之研究 國立成功大學 口腔醫學研究所(2007)
Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23, 844-854 (2007).
Mendes Duarte, P., Neto, J. B. C., Gonçalves, P. F., Sallum, E. A., and Nociti, F. H. J. Estrogen Deficiency Affects Bone Healing Around Titanium Implants: A Histometric Study in Rats. Implant Dentistry, 12, 340-346 (2003).
Mombelli, A., and Cionca, N. Systemic diseases affecting osseointegration therapy. Clinical Oral Implants Research, 17 Suppl 2, 97-103 (2006).
Mori, H., Manabe, M., Kurachi, Y., and Nagumo, M. Osseointegration of dental implants in rabbit bone with low mineral density. Journal of Oral and Maxillofacial Surgery 55, 351-361 (1997).
Moy, P. K., Medina, D., Shetty, V., and Aghaloo, T. L. Dental implant failure rates and associated risk factors. Int J Oral Maxillofac Implants, 20, 569-77 (2005).
Narai, S., and Nagahata, S. Effects of alendronate on the removal torque of implants in rats with induced osteoporosis. Int J Oral Maxillofac Implants, 18, 218-23 (2003).
Newman, E., Turner, A. S., and Wark, J. D. The potential of sheep for the study of osteopenia: Current status and comparison with other animal models. Bone, 16, S277-S284 (1995).
Nociti, F. H., Jr., Sallum, A. W., Sallum, E. A., and Duarte, P. M. Effect of estrogen replacement and calcitonin therapies on bone around titanium implants placed in ovariectomized rats: a histometric study. Int J Oral Maxillofac Implants, 17, 786-92 (2002).
Pan, J., Shirota, T., Ohno, K., and Michi, K.-I. Effect of ovariectomy on bone remodeling adjacent to hydroxyapatite-coated implants in the tibia of mature rats. Journal of Oral and Maxillofacial Surgery, 58, 877-882 (2000).
Qi, M. C., Zhou, X. Q., Hu, J., Du, Z. J., Yang, J. H., Liu, M., and Li, X. M. Oestrogen replacement therapy promotes bone healing around dental implants in osteoporotic rats. International Journal of Oral and Maxillofacial Surgery, 33, 279-285 (2004).
Rigo, E. C. S., Boschi, A. O., Yoshimoto, M., Allegrini, J. S., Konig, J. B., and Carbonari, M. J. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Materials Science and Engineering: C, 24, 647-651 (2004).
Rocca, M., Fini, M., Giavaresi, G., Nicoli Aldini, N., and Giardino, R. Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep. Biomaterials, 23, 1017-1023 (2002).

Sennerby, L., Wennerberg, A., and Pasop, F. A new microtomographic technique for non-invasive evaluation of the bone structure around implants. Clinical Oral Implants Research, 12, 91-94 (2001).
Thompson, D. D., Simmons, H. A., Pirie, C. M., and Ke, H. Z. FDA Guidelines and animal models for osteoporosis. Bone, 17, 125S-133S (1995).
Tokugawa, Y., Shirota, T., Ohno, K., and Yamaguchi, A. Effects of bisphosphonate on bone reaction after placement of titanium implants in tibiae of ovariectomized rats. Int J Oral Maxillofac Implants, 18, 66-74 (2003).
Tsolaki, I. N., Madianos, P. N., and Vrotsos, J. A. Outcomes of Dental Implants in Osteoporotic Patients. A Literature Review. Journal of Prosthodontics, 18, 309-323 (2009).
Vidigal, G. M., Groisman, M., Gregório, L. H., and Soares, G. D. A. Osseointegration of titanium alloy and HA-coated implants in healthy and ovariectomized animals: a histomorphometric study. Clinical Oral Implants Research, 20, 1272-1277 (2009).
Wactawski-Wende, J., Grossi, S. G., Trevisan, M., Genco, R. J., Tezal, M., Dunford, R. G., Ho, A. W., Hausmann, E., and Hreshchyshyn, M. M. The role of osteopenia in oral bone loss and periodontal disease. J Periodontol, 67, 1076-84 (1996).
Wennerberg, A., and Albrektsson, T. Effects of titanium surface topography on bone integration: a systematic review. Clinical Oral Implants Research, 20, 172-184 (2009).
Xiao, J., Zhou, H., Zhao, L., Sun, Y., Guan, S., Liu, B., and Kong, L. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep. Osteoporosis International, 22, 1907-1913 (2010).
Yamazaki, M., Motohashi, and Yamaguchi Bone reactions to titanium screw implants in ovariectomized animals. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 87, 411-418 (1999).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw