進階搜尋


下載電子全文  
系統識別號 U0026-2308201014391600
論文名稱(中文) 奈米金粒子在液/液界面的自組裝與機制探討
論文名稱(英文) Gold Nanoparticles Self-Assembly at Liquid-Liquid interface and its Mechanism
校院名稱 成功大學
系所名稱(中) 奈米科技暨微系統工程研究所
系所名稱(英) Institute of Nanotechnology and Microsystems Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 黃鼎鈞
研究生(英文) Ding-Jun Huang
電子信箱 little_dr5000@hotmail.com
學號 q2697402
學位類別 碩士
語文別 英文
論文頁數 112頁
口試委員 指導教授-呂宗行
口試委員-王覺寬
口試委員-任春平
中文關鍵字 金還原法  奈米金粒子  十六烷硫醇  水/正己烷界面  自組裝薄膜 
英文關鍵字 Gold reduction  Gold nanoparticles  1-dodecanethiol  Water/hexane interface  Self-assembly film 
學科別分類
中文摘要 眾多的奈米金合成法中,以還原法最具代表性,利用四氯金酸為前驅體,檸檬酸三鈉為還原體,還原氯金酸離子並合成奈米金粒子,一個奈米金粒子約有五十萬金原子所組成,其中檸檬酸離子包覆在奈米金粒子的表面上,並施以靜電排斥力穩定金奈米粒子,大幅降低粒子之間的團聚現象。
本實驗利用還原法合成9.2nm的奈米金粒子,其水溶液顏色為紅紫色並呈現負電性。為測試其穩定性,分別在奈米金溶液中添加氯化鉀溶液、蔗糖水、乙醇與異丙醇,其中,加入氯化鉀溶液的金溶液,由於鉀離子與檸檬酸離子的化學結合,溶液呈現了深藍色,隨著時間轉為淡藍,最後變為透明,且溶液中產生了團聚物;加入蔗糖水的金溶液則無顏色改變,由於蔗糖與水的水合作用中沒有伴隨電子的轉移,所以蔗糖分子與檸檬酸離子之間沒有發生化學反應;加入乙醇的金溶液緩慢地呈現深藍色,由於乙醇分子強烈的吸附性,替換了溶液中的氯金酸與檸檬酸離子,並降低了檸檬酸離子的負電性之後,使得些微的團聚發生,奈米金粒子的粒徑變為9.71nm;加入異丙醇的金溶液立即呈現深紫色,除了粒徑轉變為18.7nm外,其不均勻性大幅增加,可能是由於異丙醇分子的巨大吸附性,替換了溶液中的氯金酸與檸檬酸離子,並降低了檸檬酸離子的負電性之後,使得大規模的粒子團聚發生。
自組裝實驗採用添加異丙醇的奈米金溶液,在正己烷中加入定量的十六烷硫醇之後,將正己烷溶液倒入金溶液表面上,得到水/正己烷的液體界面,同時在此界面發生奈米金粒子自組裝現象,界面上的金自組裝膜隨著時間大面積地生成,由於所需的金粒子來自金溶液,所以金溶液的顏色將隨之淡化直到透明。
利用磁能攪拌棒來加快自組裝膜的生成,在穿透式電子顯微鏡下, 自然所得的自組裝金薄膜於大面積的組裝相當集中,明顯優於以攪拌所得後分布稀疏的金薄膜;在小面積下,自然所得的金薄膜會有重疊的現象,而經由攪拌所得的金薄膜則形成較好的單層薄膜,同時出現了有趣的分布圖案。
英文摘要 Reduction is the most popular method to synthesize gold nanoparticles by using interaction between precursor hydrogen tetrachloroaurate (HAuCl4) and reducer sodium citrate (Na3C6H5O7). Gold nanoparticles with diameter of 9.2 nm are nucleated under the citrate layer capping around their surfaces. The whole gold nanoparticles are stabilized and display in well-synthesized gold colloid solution since the capping citrate layers prevent gold nanoparticles from aggregation or precipitation by electrostatic repulsion. The stability of gold colloids solution is test by adding aqueous solution of potassium chloride (KCl), sucrose (C12H22O11), ethanol, or Isopropyl alcohol (IPA), in respectively. The color of gold nanoparticle solution changes into deep blue initially and becomes transparent finally if KCl solution is added. This is due to the chemical reaction between potassium and citrate ions. Some precipitations of potassium and citrate compound will appear in solution phase. However, no effective color change of gold colloid solution will happen if sucrose solution is added. The reason behind it is the molecules in sucrose solution are hydrated by water phase without any electron transfer occurring. Therefore, no chemical interaction affects the electronegative charge gold colloid solution. The ethanol-added gold solution is slowly changed to deep blue color. After TEM image measurement, the gold nanoparticles are approximate 9.71nm in diameter. The ethanol-added gold solution gradually becomes deep blue since ethanol molecules decrease the surface charge of gold nanoparticles by competitive adsorption among ethanol molecules, citrate and AuCl3- anions. The IPA-added gold solution shows deep purple color immediately. By using TEM images, the gold naoparticles in IPA-added solution are proved to be non-uniform in size and shape with average diameter around 18.7nm. The larger diameter of gold nanoparticles in IPA-added solution is due to the competitive adsorption among IPA molecules, citrates and AuCl3- anions is stronger than ethanol molecules. In this thesis, the IPA-added gold solution is selected in self-assembly experiment. In the self-assembly experiments, 1-dodecanethiol is first mixed with hexane solvent. When hexane solution is added into gold solution, a water/hexane interface is formed. The gold nanoparticles will be self-assembled at the interface. As growing with time, the color of gold solution becomes lighter and lighter. Because of the strong attraction between gold nanoparticles and 1-dodecanethiol in hexane solution, a gold film occurs at the interface. The gold film is consist of enormous amount of gold nanoparticles. Most of gold nanoparticles will finally self assembly at the interface. The color of gold solution becomes transparent after 3 hours. In the experiments, the magnetic stirrer is used to speed up the formation of self-assembly film. Under TEM inspection, long-range self assembly gold film is achieved in the case without stirring, but the relatively sparse distribution of gold nanoparticles appears in the case with stirring. Multi-layer films are also found if they grow without stirring, but the cases with stirring have monolayer films. For monolayer cases, nanoparticles form some patterns and the interstices among particles are clear.
論文目次 摘要 I
Abstract III
致謝 V
Acknowledgement VI
Contents VII
List of Tables IX
List of Figures X
Nomenclature XV

Chapter 1 Introduction 1
1-1. Nanotechnology 1
1-2. Nanoparticles & Nanocrystals 2
1-3. Nano Gold 4
1-3-1 Fundamental 4
1-3-2 History 5
1-3-3 Synthesis Method 5
1-3-4 Application of nanogold 8
1-4. Motivation 11
Chapter 2 Theory fundamental 35
2-1. Self-assembly (SA) 35
2-2. SA methods 35
2-2-1 Natural evaporation 36
2-2-2 Sedimentation 36
2-2-3 Centrifugation 37
2-2-4 Two-Dimension deposition 37
2-2-5 Convective assembly 38
2-2-6 Template-assisted method 40
2-2-7 Heat-treatment 42
2-2-8 Solution phase method 42
2-2-9 Layer by Layer (LBL) 43
2-2-10 Liquid-Gas Interface 45
2-2-11 Water/Oil interface 47
Chapter 3 Experimental Methods 83
3-1. Overview 83
3-2. Procedures & Process 83
3-2-1 Pre-treatment 83
3-2-2 Process of gold nanoparticle synthesis 84
3-2-3 Adding something to gold nanoparticle solution 85
3-2-4 Process of Au self-assembly 86
Chapter 4 Results and Discussion 90
4-1. Process of gold nanoparticle synthesis 90
4-2. Stability of the gold nanoparticle solution 91
4-3. Process of Au self-assembly 92
Chapter 5 Conclusion 101
Chapter 6 Future Development 103
References 104
Author Biography 112
參考文獻 [1] John A. Patten, “World book encyclopedia”, World Book Inc., Chicago., U.S.A., Vol.14, 10 (2009)
[2] Yoon S. Lee, “Self-assembly and Nanotechnology: a force balance approach,” John Wiley & Sons Inc., Hoboken NJ., U.S.A, 173-175 (2008)
[3] Gabor L. Hornyak et al, “Introduction to Nanoscience,” CRC press, Taylor & Francis Group., NW U.S.A., 192-193 (2008)
[4] Yoon S. Lee, “Self-assembly and Nanotechnology: a force balance approach,” John Wiley & Sons, Inc., Hoboken NJ., U.S.A, 222-223 (2008)
[5] Gabor L. Hornyak et al, “Introduction to Nanoscience,” CRC press, Taylor & Francis Group., NW U.S.A., 290-29 (2008)
[6] N R. Jana, L. Gearheart, & C J. Murphy, “Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles,” Langmuir. 17, 6782-6786 (2007)
[7] A D. McFarland, & H A. Godwin et al, “Color My Nanoworld,” J. Chem. Educ. 81, No.4, 544A-544B (2004)
[8] P. K. Khanna et al, “PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent, ” Mat. Chem. Phys., 92, 229-233 (2005)
[9] G. Tsutsui et al, “Well-size-controlled Colloidal Gold Nanoparticles Dispersed in Organic Solvents, ” Jpn. J .Appl. Phys. 40, No.1, 346- (2001)
[10] T. Muangnapoh & T. Charinpanitkul et al, “Facile strategy for stability control of gold nanoparticles synthesized by aqueous reduction method, ” Curr. App. Phys., 10, 708 (2010)
[11] Y. Sun & Y. Xia, “Nanoparticles Shape-Controlled Synthesis of Gold and Silver, ” Science 298, 2176-2179 (2002)
[12] A. Pal, S. Shah & S. Devi, “Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent, ” Mat. Chem. Phys. 114, 530 (2009)
[13] Z V. Saponjic, & N M. Dimitrijevic et al, “Self-Assembly of TOPO-Derivatized Silver Nanoparticles into Multilayered Film, ” Chem. Mater. 15, 4521-4526 (2003)
[14] D. Xia & S. R. J. Brueck et al, “Top-Down Approaches to the Formation of Silica Nanoparticle Patterns, ” Langmuir 23, 5377-5385 (2007)
[15] Q. Chen et al, “ Sol-gel nanocoating on commercial TiO2 nanopowder using ultrasound,” J. Sol-Gel. Sci. Technol 53, 115-120 (2010)
[16] YU Huang, & ZHENG Xu-xu et al., “Preparation of Nitrogen-doped TiO2 nanoparticle catalyst and its calalytic activity under the visible light, ” Chinese. J. Chem. Eng. 15, No.6, 802-807 (2007) (in Chinese)
[17] HU Jifan. et al, “ Photo-catalysis degradation of the agrochemicals using the nanoparticles TiO2,” Rare Met. Mat. Eng. 32, No.4, 280-283 (2003) (in Chinese)
[18] ZOU Min & WANG Qilin, “Improvement of Performance of Steel Structural Fireproofing Dope with ZnO Whisker and Nanometer TiO2, ” Nanotech. Preci. Eng. 7, No.1, 25-30 (2009) (in Chinese)
[19] YU Cheng-lin, KANG Yong & ZHAO Wei, “ Preparation of Nano-TiO2 Immobilized onto Diatomite Micro-Particles,” Nanotech. Preci. Eng. 6, No.4, 254-260 (2008) (in Chinese)
[20] C. Y. Tai et al, “Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor,” Ind. Eng. Chem. Res. 46, 5536- 5541 (2007)
[21] LIU Li-hua, & SONG Yun-hua et al, “Application of Nano-sized Magnesium Hydroxide Flame Retardant in Flexible PVC, ” J. Chem. Eng. Chinese Univ. 18, No.3, 339-343 (2004) (in Chinese)
[22] Z. Yang & Y. Yang et al, “Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-octahedra,” Cryst. Growth. Des. 10, 291-295 (2010)
[23] A T. Kelley, & T L. Royster, Jr. et al, “ Investigation and Application of Nanoparticle Dispersions of Pigment Yellow 185 using Organic Solvents,’’ ACS Appl. Mat. & Inter. 2, No.1, 61-68 (2010)
[24] CHEN Yang, CHEN Zhi-gang. & CHEN Ai-lian, “Preparation Nano-CeO2 Particles and its Polishing Performance for Si (100) and Si (111), ” Nanotech. Preci. Eng. 7, No.6, 543-547 (2009) (in Chinese)
[25] Y. Nakanishi & T. Imae, “Preparation of siloxy focal dendron-protected TiO2 nanoparticles and their photocatalysis,” J. Colloid. Inter. Sci. 297, 122-129 (2006)
[26] H. J. Byun, J. U. Kim & H. Yang, “Blue, green, and red emission from undoped and doped ZnGa2O4 colloidal nanocrystals, ” Nanotechnology 20, 495602-495607 (2009)
[27] Z. Wang, Zewei. Q, & J. Lin, “ Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping,” Inorg. Chem. 46, 5237-5242 (2007)
[28] H. Tian & J. Ma., “Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, ” Ceram. Inter. 35, 1289-1292 (2009)
[29] Gabor L. Hornyak et al, “Introduction to Nanoscience,” CRC press, Taylor & Francis Group., NW U.S.A., 242 (2008)
[30] Chales T. Campbell “ The Active Site in Nanoparticle Gold Catalysis, ” Science 306, 234-235 (2004)
[31] Gabor L. Hornyak et al, “Introduction to Nanoscience,” CRC press, Taylor & Francis Group., NW U.S.A., 304-312 (2008)
[32] Gabor L. Hornyak et al, “Introduction to Nanoscience,” CRC press, Taylor & Francis Group., NW U.S.A., 17-18 (2008)
[33] I. H. El-Sayed, X. Huang, & M A. El-Sayed, “Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer, ” Nano. Lett. 5, 829-834 (2005)
[34] K. Ai, Y. Liu, & L. Lu, “Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula, ” J. Am. Chem. Soc. 131, 9496-9497 (2009)
[35] F. Wei & N. Li et al, “Rapid detection of melamine in whole milk mediated by unmodified gold nanoparticles, ” Appl. Phys. Lett. 96, 133702-1 to 3 (2010)
[36] BI Mingxin, “Tainted milk powder sickens 1,253 babies in China”
Xinhuanet News, 2008-09-15, 16:21:48
http://news.xinhuanet.com/english/2008-09/15/content_10009985.htm
[37] ZHAO Shengxiang, Xinhuanet Zhejiang News, 2008-09-16 10:02:15
http://www.zj.xinhuanet.com/df/2008-09/16/content_14405911.htm
(in Chinese)
[38] J. S. Biteen et al, “ Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters, ” Nano. Lett. 5, 1768-1773 (2005)
[39] O. D. Velev, “ MATERIAL SCIENCE: Self-assembly of Unusual Nanoparticle Crystals,” Science 312, 376-377,(2006)
[40] Yoon S. Lee, “Self-assembly and Nanotechnology: a force balance approach,” John Wiley & Sons, Inc., Hoboken NJ., U.S.A, 3-5 (2008)
[41] O. D. Velev & Abraham M. Lenhoff, “Colloidal crystals as templates for porous materials” Curr. Opi. Coll. & Inter. Sci. 5, 56-63 (2000)
[42] J. Rybczynski, U. Ebelsc & M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles, ” Coll. Surf. A: Physicochem. Eng. Aspects. 219, 1-6 (2003)
[43] W. Li & L. Xu et al, “Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography, ” Appl. Surf. Sci. 253, 9035-9038 (2007)
[44] L. XU et al., “Fabrication of silicon nanoarrays by direct nanosphere lithography, ” Surf. Rev. Lett. 14, No.4, 709-712 (2007)
[45] A. D. Ormonde, & R. P. V. Duyne et al, “ Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy, ” Langmuir. 20, 6927-6931 (2004)
[46] M. H. Kim & O. O. Park et al, “Rapid Fabrication of Two- and Three-Dimensional Colloidal Crystal Films via Confined Convective Assembly,” Adv. Funct. Mater. 15, 1329-1337 (2005)
[47] S. H. Park, D. Qin & Y. Xia, “Crystallization of Mesoscale Particles over Large Areas, ” Adv. Mater. 10, 1028-1031 (1998)
[48] S. H. Park & Y. Xia, “Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters, ” Langmuir. 15, 266-273 (1999)
[49] S. M. Yang & G A. Ozin, “Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers, ” Chem. Commun. 2000, No.24, 2507-2508
[50] Y. Yin, Y. Lu & Y. Xia, “A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids, ” J. Am. Chem. Soc. 123, 771-772 (2001)
[51] Y. Yin, Y. Lu, B. Gates & Y. Xia, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures, ” J. Am. Chem. Soc. 123, 8718-8729 (2001)
[52] J. H. Lee, Q. Wu & W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34, No.4, 443-445 (2009)
[53] H F. Hamann, S. I. Woods & Shouheng. Sun, “Direct Thermal Patterning of Self-Assembled Nanoparticles,” Nano. Lett. 3, 1643-1645 (2003)
[54] Y. Kang, K. J. Erickson and T. A. Taton, “Plasmonic Nanoparticle Chains via a Morphological, Sphere-to-String Transition, ” J. Am. Chem. Soc. 127, 13800-13801 (2005)
[55] E. Hao & T. Lian, “Buildup of Polymer/Au Nanoparticle Multilayer Thin Films Based on Hydrogen Bonding” Chem. Mater. 12, 3392-3396 (2000)
[56] X. M. Lin, H. M. Jaeger, C. M. Sorensen & K. J. Klabunde, “ Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates, ” J. Phys. Chem. B 105, 3353-3357 (2001)
[57] V. Santhanam, J. Liu, R. Agarwal & R. P. Andres, “Self-Assembly of Uniform Monolayer Arrays of Nanoparticles,” Langmuir. 19, 7881-7887 (2003)
[58] H. Duan & D. Wang et al, “Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces, ” Angew. Chem. Int. Ed. 43, 5639-5642 (2004)
[59] F. Reincke, S. G. Hickey, W. K. Kegel & D. Vanmaekelbergh, “Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water Oil Interface, ” Angew. Chem. Int. Ed. 43, 458-462 (2004)
[60] Y. J. Li, W. J. Huang & S. G. Sun, “A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/Water Interface,” Angew. Chem. Int. Ed. 45, 2537-2539 (2006)
[61] Y. K. Park, S. H. Yoo & S. Park, “Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface, ” Langmuir 23, 10505-10509 (2007)
[62] Y. K. Park & S. Park, “Directing Close-Packing of Midnanosized Gold Nanoparticles at a Water/Hexane Interface, ” Chem. Mater. 20, 2388-2393 (2008)
[63] Ying. Wang & Minglai. Yang et al, “Silicon nanotips formed by self-assembled Au nanoparticle mask, ” J. Nanopart. Res. 12, 1821-1828 (2010)
[64] LI Yong-jun & LIU Chun-yan, “You Xu Na Mi Jie Gou Bo Mo Cai Liao, ” Chemical Industry Process, Beijing. (2006) (in Chinese)
[65] http://www.ncku.edu.tw/%7Efacility/facility/index.htm
[66] D. Shalom et al, “Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor, ” Mat. Lett. 61, 1146-1150 (2007)
[67] K. S. Huang, T. H. Lai & Y. C. Lin, “Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles, ” Lab. Chip. 2006, No.6, 954-957.
[68] H. Míguez, & F. Meseguer et al, “Evidence of FCC Crystallization of SiO2 Nanosphere, ” Langmuir. 13, 6009-6011 (1997)
[69] LI Tin, SUN Shu-qing & CUI Jin-jin, “Preparation of Nano-CdS with Hydrothemal-Solvothermal Method, ” Nanotech. Preci. Eng. 6, No.3, 227-231 (2008) (in Chinese)
[70] H. Wu, Y. Yang & Y. C. Cao, “Synthesis of Colloidal Uranium-Dioxide Nanocrystals,” J. Am. Chem. Soc. 128, 16522-16523 (2006)
[71] LIU Li-qiang & XU Chuan-lai et al, “Review on Development and Application of Nanogold in Rapid Detection for Food Safety, ” Food Sci. 28, No.5, 348-352 (2007) (in Chinese)
[72] A. Kosiorek, & M. Giersig et al, “Shadow Nanosphere Lithography: Simulation and Experiment, ” Nano. Lett. 4, 1359-1363 (2004)
[73] M. H. Kim, & O. O. Park et al, “Fabrication of robust, high-quality two-dimensional colloidal crystals from aqueous suspensions containing water-soluble polymer, ” Appl. Phys. Lett. 88, 143127 (2006)
[74] LI Fei & DU Chun-lei et al, “A Fabrication Method of Nano-Metal Array for LSPR Sensor, ” Nanotech. Preci. Eng. 5, 121-124 (2007) (in Chinese)
[75] J. Deng, & X. Tao et al, “A simple self-assembly method for colloidal photonic crystals with a large area, ” J. Coll. Inter. Sci. 286, 573-578 (2005)
[76] K. Kamata, Y. Lu & Y. Xia, “Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores, ” J. Am. Chem. Soc. 125, 2384-2385 (2003)
[77] H. B. Lee, Y. M. Yoo & Y-H. Han, “Characteristic optical properties and synthesis of gold-silica core-shell colloids, ” Scr. Mater. 55, 1127-1129 (2006)
[78] Y. Qi & M. Chen et al, “Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles, ” Coll. Surf. A: Phys .Chem. Eng. Aspects 302, 383-387
[79] Y. Lu & Y. Xia et al, “ Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids, ” Nano. Lett. 2, 785-788 (2002)
[80] F-K. Liu, Y-Y. Lin & C-H. Wu, “Highly efficient approach for characterizing nanometer-sized gold particles by capillary electrophoresis, ” Analy. Chim. Acta 528, 249-254 (2005)
[81] YIN Jin-jin et al, “Comparison on reductive preparation of gold nanoparticles in biodetection, ” J. Hunan Univ. Tech. 22, No.1, 104-108 (2008) (in Chinese)
[82] S-L. Kuai et al, “High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique, ” J. Crys. Gro. 267, 317-324 (2004)
[83] YANG Zhi-yi et al, “Nanotechnology”, China Machine Press, Beijing, 5-17 (2007) (in Chinese)
[84] L. Qi, C. Chen & S. Liu, “In-situ Formation of Gold Nanoparticles on Self-assembly Monolayer Modified Silicon Substrate, ” Proc. SPIE. 7493, 749358 (1-6) (2009)
[85] MA Juan & HU Jiawen et al, “Sonication-mediated Film Assembly of Gold Nanoparticles at a Water/Hexane Interface Used as a SERS Substrate, ” Chem. J. Chinese. Univ. 30, No.11, 2288-2290 (2008) (in Chinese)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw