進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201918374400
論文名稱(中文) 應用車道幾何方法於無人車線道偵測的強健演算法之研究
論文名稱(英文) A Robust Lane Detection Algorithm Based On Binary Line Segment Filter for Lane Keeping in Autonomous Vehicles
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 劉永翔
研究生(英文) Yung-Hsiang Liu
學號 P46061461
學位類別 碩士
語文別 英文
論文頁數 76頁
口試委員 指導教授-楊世銘
口試委員-江達雲
口試委員-李劍
口試委員-蔡尚恩
口試委員-陳春志
中文關鍵字 車道偵測  車道控制  二進制線段過濾器 
英文關鍵字 Lane detection  Lane control  Binary line segment filter 
學科別分類
中文摘要 車道保持系統是減少意外車道偏離所引起交通事故數量的關鍵。然而大多數車道偵測演算法未能有效地偵測在具挑戰性之道路場景中的車道標記,使得車道保持系統不可靠。本研究提出了一種基於二進制線段過濾器的強健偵測演算法,該演算法結合中值局部閾值和線段偵測器來提取車道特徵,並藉由二進制線段濾波器消除偽車道特徵。在準確的車道特徵提取後,使用具滑動窗口的改進霍夫變換和優化的隨機抽樣一致性拋物線擬合來偵測車道。最後應用純追踪轉向控制器和比例積分速度控制器,以保持車輛沿偵測到的車道中心行駛。實驗結果顯示在即時應用中,所提出之演算法優於以往的研究實現了97%的平均正確偵測率與-18%的最小化平均交叉路徑誤差。
英文摘要 Lane keeping system (LKS) is key to reduce the number of traffic accidents by unintended lane departures has been alarming. However, most lane detection algorithms fail to detect effectively the lane markings in challenging road scenes, rendering the lane keeping system unreliable. This work proposes a robust lane detection algorithm based on binary line segment filter. The algorithm combines the median local threshold and line segment detector to extract lane features, and removes false lane features by a binary line segment filter. After accurate lane feature extraction, an improved Hough transform with sliding window and an optimized random sample consensus parabola fitting are used to detect lanes. Finally, a pure-pursuit steering controller and a proportion-integral speed controller are applied to keep the vehicle driving along the detected lane center. Experiment results show that the proposed algorithm outperforms the previous work in achieving average correct detection rate at 97% and minimizing average cross-track error at -18% in real-time applications.
論文目次 Abstract in Chinese i
Abstract ii
Acknowledgement iii
Content iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Outline 6
Chapter 2 System Architecture of Lane Keeping System 9
2.1 Introduction to System Architecture 9
2.2 Hardware of an Autonomous Vehicle 9
2.3 Communication Connection 10
2.4 Summary 12
Chapter 3 Lane Detection 24
3.1 Introduction 24
3.2 Image Preprocessing and Lane Feature Extraction 24
3.3 Lane Model Fitting 29
3.4 Experimental Verification 32
3.5 Summary 34
Chapter 4 Lane Control 53
4.1 Introduction 53
4.2 Pure-Pursuit Steering Controller 53
4.3 Proportion-Integral Speed Controller 55
4.4 Experimental Verification 56
4.5 Summary 59
Chapter 5 Summary and Conclusions 71
References 73
參考文獻 [1] Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018.
[2] Liu, G.; Li, S.; Liu, W. Lane Detection Algorithm Based on Local Feature Extraction. Chinese Automation Congress, 2013, 59-64.
[3] Piao, J.; Shin, H. Robust Hypothesis Generation Method Using Binary Blob Analysis for Multi-lane Detection. IET Image Processing, 2017, 11, 1210-1218.
[4] Kuo, C. Y.; Lu, Y. R.; Yang, S. M. On the Image Sensor Processing for Lane Detection and Control in Vehicle Lane Keeping Systems. Sensors, 2019, 19, 1665.
[5] Huang, A. S.; Moore, D.; Antone, M.; Olson, E.; Teller, S. Finding Multiple Lanes in Urban Road Networks with Vision and LIDAR. Autonomous Robots, 2009, 26, 103-122.
[6] Clanton, J. M.; Bevly, D. M.; Hodel, A. S. A Low-cost Solution for an Integrated Multisensor Lane Departure Warning System. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 47-59.
[7] Tao, Z.; Bonnifait, P.; Fremont, V.; Ibanez-Guzman, J. Mapping and Localization Using GPS, Lane Markings and Proprioceptive Sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, 406-412.
[8] Song, W.; Yang, Y.; Fu, M.; Li, Y.; Wang, M. Lane Detection and Classification for Forward Collision Warning System Based on Stereo Vision. IEEE Sensors Journal, 2018, 18, 5151-5163.
[9] Xu, H.; Li, H. Study on a Robust Approach of Lane Departure Warning Algorithm. IEEE International Conference on Signal Processing System, 2010, 201-204.
[10] Wang, X.; Wang, Y.; Wen, C. Robust Lane Detection Based on Gradient-pairs Constraint. Proceedings of the 30th Chinese Control Conference, 2011, 3181-3185.
[11] Wang, J. G.; Lin, C.; Chen, S. Applying Fuzzy Method to Vision-based Lane Detection and Departure Warning System. Expert Systems with Applications, 2010, 37, 113-126.
[12] Lin, C. J.; Wang, J. G.; Chen, S. M.; Lee, C. Y. Design of a Lane Detection and Departure Warning System Using Functional Link Based Neuro-fuzzy Network. IEEE International Conference on Fuzzy System, 2010.
[13] Gaikwad, V.; Lokhande, S. Lane Departure Identification for Advanced Driver Assistance. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 910-918.
[14] Kim, Z. Robust Lane Detection and Tracking in Challenging Scenarios. IEEE Transactions on Intelligent Transportation Systems, 2008, 9, 16-26.
[15] Xuan, H.; Liu, H.; Yuan, J.; Li, Q. Robust Lane-mark Extraction for Autonomous Driving under Complex Real Conditions. IEEE Access, 2017, 6, 5749-5765.
[16] Bertozzi, M.; Broggi, A. Real-time Lane and Obstacle Detection on the GOLD System. Proceedings of Conference on Intelligent Vehicles, 1996.
[17] Aly, M. Real Time Detection of Lane Markers in Urban Streets. IEEE Intelligent Vehicles Symposium, 2008, 7-12.
[18] Veit, T.; Tarel, J.-P.; Nicolle, P.; Charbonnier, P. Evaluation of Road Marking Feature Extraction. Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, 2008, 174-181.
[19] Sebsadji, Y.; Tarel, J.-P.; Foucher, P.; Charbonnier, P. Robust Road Marking Extraction in Urban Environments Using Stereo Images. IEEE Intelligent Vehicles Symposium, 2010, 394-400.
[20] Niu, J.; Lu, J.; Xu, J.; Lv, P.; Zhao, X. Robust Lane Detection Using Two-stage Feature Extraction with Curve Fitting. Pattern Recognition, 2016, 59, 225-233.
[21] Haloi, M.; Jayagopi, D. B. A Robust Lane Detection and Departure Warning System. IEEE Intelligent Vehicles Symposium, 2015, 126-131.
[22] Lim, K.; Hong, Y.; Ki, M.; Choi, M.; Byun, H. Vision-based Recognition of Road Regulation for Intelligent Vehicle. IEEE Intelligent Vehicles Symposium, 2018, 1418-1425.
[23] Ozgunalp, U. Combination of the Symmetrical Local Threshold and the Sobel Edge Detector for Lane Feature Extraction. 9th International Conference on Computational Intelligence and Communication Networks, 2017, 24-28.
[24] Deng, J.; Han, Y. A Real-time System of Lane Detection and Tracking Based on Optimized RANSAC B-spline Fitting. Research in Applied Computation Symposium, 2013, 157-164.
[25] Ye, Y. Y.; Hao, X. L.; Chen, H. J. Lane Detection Method Based on Lane Structural Analysis and CNNs. IET Intelligent Transport Systems, 2018, 12, 513-520.
[26] Tan, H.; Zhou, Y.; Zhu, Y.; Yao, D.; Li, K. A Novel Curve Lane Detection Based on Improved River Flow and RANSA. 17th International IEEE Conference on Intelligent Transportation Systems, 2014, 133-138.
[27] Li, S.; Xu, J.; Wei, W.; Qi, H. Curve Lane Detection Based on the Binary Particle Swarm Optimization. 29th Chinese Control and Decision Conference, 2017, 75-80.
[28] Liu, H.; Li, X. Sharp Curve Lane Detection for Autonomous Driving. Computing in Science & Engineering, 2018, 21, 80-95.
[29] Wallace, R.; Stentz, A.; Thorpe, C. E.; Maravec, H.; Whittaker, W.; Kanade, T. First Results in Robot Road Following. Proceedings of the International Joint Conference on Artificial Intelligence, 1985, 1089-1095.
[30] Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J., Fiore, G. Real-time Motion Planning with Applications to Autonomous Urban Driving. IEEE Transactions on Control Systems Technology, 2009, 17, 1105-1118.
[31] Wit, J.; Crane, C. D.; Armstrong, D. Autonomous Ground Vehicle Path Tracking. Journal of Robotic Systems, 2004, 21, 439-449.
[32] Villagra, J.; Herrero-Perez, D. A Comparison of Control Techniques for Robust Docking Maneuvers of an AGV. IEEE Transactions on Control Systems Technology, 2011, 20, 1116-1123.
[33] Shan, Y.; Yang, W.; Chen, C. CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy Controller for Autonomous Vehicles. International Journal of Advanced Robotic Systems, 2015, 12, 1-13.
[34] Von Gioi, R. G.; Jakubowicz, J.; Morel, J. M.; Randall G. LSD: A Line Segment Detector. Image Processing on Line, 2010, 2, 35-55.
[35] Narote, S. P.; Bhujbal P. N.; Narote, A. S.; Dhane, D. M. A Review of Recent Advances in Lane Detection and Departure Warning System. Pattern Recognition, 2018, 73, 216-234.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw