進階搜尋


下載電子全文  
系統識別號 U0026-2307201918052600
論文名稱(中文) 以軟體定義無線電實作車間與路側裝置之無線通訊系統
論文名稱(英文) The Implementation of Wireless Communication System by Software-Defined Radio for Inter-Vehicle and Roadside Unit
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 107
學期 2
出版年 108
研究生(中文) 黃棋宏
研究生(英文) Chi-Hung Huang
學號 R96061099
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-陳文字
口試委員-林福林
口試委員-林易泉
口試委員-李威勳
中文關鍵字 軟體定義無線電  車聯網  載波偵測多重存取  隨車診斷系統  樹莓派  路側裝置 
英文關鍵字 GNURadio  IoV  On-board Diagnostic  Software-Defined Radio  CSMA/CA  Roadside Unit 
學科別分類
中文摘要 隨著科技的發展,漸漸的任何東西都能夠與網路連結,在目前行動裝置已經非常發達的情況下,車輛與網路連結便成為下一個潮流,因此車聯網就油然而生,車聯網主要包含四個部分,車與車(Vehicle to Vehicle, V2V),車與路(Vehicle to Roadside, V2R),車與網路(Vehicle to Infrastructure, V2I),車與人(Vehicle to Human, V2H),透過網路的連結可以將彼此的資訊互相流通,各個節點都能夠了解彼此之間的狀態。其中車與車的通訊技術可以進行訊息的自動交換,如此一來,駕駛就可以了解周遭附近車輛的狀況,另外加上路側裝置之整合,甚至可以不用看到交通號誌之燈號就能夠了解附近的交通狀況以及路況資訊,此外再透過遠端分析將這些資訊進行運算就能夠當作行車路徑的決策依據。本研究透過軟體定義無線電實作一個收發平台系統,包含擷取車輛資訊所使用的微型電腦-樹莓派,經由軟體定義無線電之收發模組發送資訊,將不同節點之資料透過該平台傳送給其他裝置,在無線通訊的環境中透過載波偵測多重存取機制避免訊號碰撞,另外透過隨車診斷系統,能夠透過Python程式讀取車輛之訊息儲存於樹莓派中,在讀取車輛的同時也將車輛之重要資訊傳送給其他車輛以及路側裝置,在路側裝置端透過程式實作一交通號誌,在車輛通過路口或是靠近路側裝置時,能得知當下的交通號誌時相,同時將資訊經由4G無線網卡上傳至雲端以利其他裝置檢視分析使用。本研究透過軟體定義無線電之靈活性,將以上之不同種功能透過程式撰寫整合至相同的程式當中,透過單一程式就能夠做到多種不同的功能,在在體現了軟體定義無線電能的優點。
英文摘要 Under the fast development of computer science, the IoT (Internet of Things) technology becomes more and more popular due to large demand for devices communicating with each other through the Internet. With the rise of artificial intelligence and big data, the hardware that can be applied to the Internet of Things will increase. Besides IoT, Internet of vehicle (IoV) can also be a dominant role. In this thesis, we attempt to design a wireless communication system for inter-vehicle communication through the SDR technology (software-defined radio). The Internet of Vehicle consists of roadside unit and vehicle side. On the vehicle side, we have to use a lightweight computer as a storage space because the vehicle does not have enough space to place a large number of instruments. Raspberry Pi is considered as a better node to store the data, and it also has small volume and uses Linux operation system. Through the on-board diagnostic system (OBD), we can read the car information in real time and store the data in Raspberry Pi. Raspberry Pi has a simple environment to program and also can build a stable and flexible software-defined radio developing environment. Also, the Raspberry Pi can connect to an USRP (Universal Software Radio Peripheral) B200 which is a popular type of SDR devices. Through the combination of Raspberry, USRP, and 4G network, the car information can be transmitted to the roadside unit, other vehicles, and cloud. At the roadside unit side, we will simulate a traffic sign as a traffic light at the intersection. Through communicating with each node, we can obtain the vehicle status and the information of traffic light from roadside unit. In order to build a stable communication system, we adopt very high frequency (VHF) band that can provide appropriate features, including long distance transmission. In the system, there are lots of nodes. In order to communicate in multiple nodes, we use CSMA/CA as a communication protocol. The use of SDR in wireless communication systems is the trend because of its convenience and flexibility. In the future, one can make a more convenient and multifunctional wireless communication systems via SDR devices.
論文目次 表目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 5
第二章 文獻回顧探討 7
2.1 軟體定義無線電 7
2.1.1軟體定義無線電的基本架構 7
2.1.2使用於軟體定義無線電之裝置 8
2.2 Raspberry Pi 9
2.3 車載診斷系統-OBD-II 11
2.4 文獻探討 12
2.5 小結 14
第三章 研究架構 16
3.1 軟體架構 16
3.1.1 GNURadio 16
3.2 硬體架構 17
3.3 系統相關技術與調變方式 19
3.3.1 CAN bus 19
3.3.2 Orthogonal Frequency-Division Multiplexing (OFDM) 25
3.4 車輛資訊及路側資訊 26
3.5 系統情境架構 28
3.5.1 架構示意圖 28
3.5.2 研究情境之設定 29
3.5.3 傳送端與接收端之設計 30
第四章 研究成果 33
4.1 車輛以及路側裝置之資訊 34
4.1.1 車輛端的資訊型態 34
4.1.2 路側裝置端的資訊型態 36
4.2 半雙工之系統收發 37
4.3 車輛與車輛之收發 38
4.4 車輛與路側裝置之收發 40
4.5 兩台車輛與路側裝置之收發 41
4.6 將車輛及路側資訊上傳雲端 44
4.7 實地做車輛與路側裝置之移動收發 45
4.8 實地做車輛與路側裝置之移動收發之二 47
4.9 GMSK以及OFDM在多重路徑的差異 50
4.10 研究成果探討 51
第五章 結論 53
5.1 結論 53
5.2 未來研究方向 53
參考文獻 55
附錄一 59
附錄二 67

參考文獻 [1]Tesla,” Autopilot | Tesla,” [Online]. Available: https://www.tesla.com/autopilot?redirect=no.
[2] M. Kaur, S. Kaur, and G. Singh, “Vehicular ad hoc networks,” Journal of Golbal Research in Computer Science, Vol. 3, No. 3, pp. 61–64, April 2012.
[3] Y. Li , “Quality, Reliability, Security and Robustness in Heterogeneous Networks: An Overview of the DSRC/WAVE Technology,” 3rd ed., Eveleigh, NSW, Australia, pp. 544-558, 2015.
[4] Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements, IEEE Standard 802.11p, 2010.
[5] R. A. Uzcategui and G. Acosta-Marum, “WAVE: A Tutorial,” IEEE Commun. Mag., vol. 47, no. 5, pp. 126–133, May 2009.
[6] K.-Y. Ho, P.-C. Kang, C.-H. Hsu, and C.-H. Lin, “Implementation of WAVE/DSRC devices for vehicular communications,” in Proc. 3CA, vol. 2, pp. 522–525, 2010.
[7] D. Jiang et al., ”Design of 5.9 GHz DSRC-based vehicular safety communication,” in IEEE Wireless Commun. vol. 13, pp. 36-43, 2006.
[8] S. Godavarty, S. Broyles, and M. Parten, “Interfacing to the onboard diagnostic system,” in Proc. IEEE 52nd-VTC, vol. 4, pp. 24–28, Sep. 2000.
[9] D. Valerio, “Open source software-defined radio: A survey on GNU Radio and its application,” Forschungszentrum Telekommunikation Wien, Vienna, Austria, FTW Tech. Rep., Aug. 2008.
[10] Ettus Research, "USRP-B200(Board Only),"[Online]. Available: https://www.ettus.com/product/details/UB200-KIT.
[11] Ettus Research, "USRP-B200mini,"[Online]. Available: https://www.ettus.com/product/details/USRP-B200mini.
[12] Raspberry Pi, "Raspberry Pi 3 Model B+,"[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.
[13] International Organization for Standardization, “ISO 15765-4: Road vehicles -- Diagnostic communication over Controller Area Network (DoCAN),” 2016.
[14] V. Matus, N. Maturana, C. Azurdia, S. Montejo-Sanchez, and ´ J. Rojas, “Hardware Design of a Prototyping Platform for Vehicular VLC Using SDR and Exploiting Vehicles CAN Bus,” in First South American Colloquium on Visible Light Communications 2017 (SACVLC2017), (Santiago, Chile), 11 2017.
[15] H. Moustafa & G. Bourdon, "VEHICULAR NETWORKS DEPLOYMENT VIEW: APPLICATIONS, DEPLOYMENT ARCHITECTURES AND SECURITY MEANS", Ubiquitous Computing and Communication Journal, 24 Mar 2008.
[16] S. I. Wang, C. C. Huang, "An unitied vehicle supervising and traftic information system, " Personal, Indoor and Mobile Radio Communications, 1996. PIMRC'96, Seventh IEEE International Symposium on, vol.3, no., pp.968-972 vol.3, pp.15-18 Oct 1996.
[17] X. Ma, J. Zhao, Y. Gong & Y. Wang, “Key Technologies of MEC Towards 5G-Enabled Vehicular Networks,” School of Information Engineering, East China Jiaotong University, 29 March 2018.
[18] D. Verenzuela, C. Liu, L. Wang, and L. Shi, “Improving scalability of vehicle-to-vehicle communication with prediction-based STDMA,” in Proc. 80th IEEE Veh. Technol. Conf. (VTC Fall), pp. 1–5, Sep. 2014.
[19] K. Bilstrup, E. Uhlemann, E. G. Ström, and U. Bilstrup, “On the ability of the 802.11p MAC method and STDMA to support real-time vehicleto-vehicle communication,” EURASIP J. Wireless Commun. Netw., vol. 2009, no. 1, Jan. 2009, Art. ID. 902 414.
[20] T. Toledo, O. Musicant & T. Lotan, “In-vehicle data recorders for monitoring and feedback on drivers’ behavior,” Transportation Research Part C 16, pp.320~331.
[21] S.-H. Baek, H.-S. Kim, D.-W. Jeong, M.-J. Kim, Y.-S. Park, and J.-W. Jang. “Implementation vehicle driving state system with obd-ii, most network,” In Communications (APCC), 2011 17th Asia-Pacific Conference on, pages 709–714, 2011. [22] D. S. Yun, J. W. Lee, S. K. Lee and O. C. Kwon, "Development of Mobile Common Component for providing vehicle information on mobile device," Computer Scienc.es and Convergence Information Technology (ICCIT), 2011 6th International Conference on, Seogwipo, pp. 809-812, 2011.
[23]吳禎祐,” 以軟體定義無線電技術實作車間通訊系統,”碩士論文,電信管理研究所,國立成功大學,台南市,2017
[24] 陳子軒,”以軟體定義無線電技術及樹莓派實作動態且即時車間通訊系統,”碩士論文,電信管理研究所,國立成功大學,台南市,2018
[25] GNURadio, “GNURadio,” [Online]. Available: http://gnuradio.org/redmine/projects/show/gnuradio.
[26] SAE International, “J1962,” [Online]. Available: https://law.resource.org/pub/us/cfr/ibr/005/sae.j1962.2002.pdf.
[27] International Organization for Standardization, “ISO 15031: Road vehicles -- Communication between vehicle and external equipment for emissions-related diagnostics,” 2014.
[28] copperhilltech, “A Brief Introduction to Controller Area Network,” [Online]. Available: https://copperhilltech.com/a-brief-introduction-to-controller-area-network/.
[29] NI國家儀器,“Controller Area Network (CAN BUS) 通訊協定原理概述,” [Online]. Available: http://www.ni.com/white-paper/2732/zht/.
[30] S. Corrigan, “Introduction to the Controller Area Network (CAN),” Texas Instruments Application Report, Dallas, Texas, USA, 2002.
[31] Z. King and S. Yu, “Investigating and securing communications in the controller area network (can),” in Computing, Networking and Communications (ICNC), 2017 International Conference on. IEEE, pp. 814–818, 2017.
[32] K. Pazul, “Controller Area Network (CAN) basics”, AN713, Microchip Technology, USA, Inc, 1999.
[33] 許芳菖,“車載CAN Bus系統之比較研究,”碩士論文,機械與機電工程研究所,國立虎尾科技大學,雲林縣,2007.
[34] NCTU, “OFDM,” [Online]. Available: https://ir.nctu.edu.tw/bitstream/11536/45879/7/350507.pdf.
[35] OBD-II PIDs » OBD-II Resource, “OBD-II Resource (2008). OBD-II software resource for developers and users,” [Online]. Available: http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
[36] 羅振瑞,”結合樹莓派與車載診斷裝置應用於行車動態數據監控系統,”碩士論文,電信管理研究所,國立成功大學,台南市,2018
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw