進階搜尋


下載電子全文  
系統識別號 U0026-2307201914171900
論文名稱(中文) 氧化矽擔載與未擔載之鑭錳與鑭鐵系波洛斯凱特觸媒於乙醇轉化之研究
論文名稱(英文) Unsupported and silica-supported perovskite-type lanthanum manganite and lanthanum ferrite in the conversion of ethanol
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 游婷芳
研究生(英文) Ting-Fang Yu
學號 N36064319
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-林裕川
口試委員-陳敬勳
口試委員-李國楨
口試委員-鄧熙聖
口試委員-鍾博文
中文關鍵字 波洛斯凱特      非晶格氧 
英文關鍵字 iron  lanthanum  manganese  nonstoichiometric oxygen  perovskite 
學科別分類
中文摘要 將波洛斯凱特結晶構造之LaMnO3與LaFeO3觸媒擔載於二氧化矽後不僅造成觸媒結晶顆粒變小,也可以藉此調整觸媒本身的酸鹼性值。未擔載的LaMnO3與LaFeO3於觸媒本質上呈現較強的鹼性特質,將二者分別擔載於二氧化矽後,由於四價錳陽離子以及四價鐵陽離子的比例增加導致其路易斯酸性點數量及強度因而增加,擔載後的觸媒因此呈現酸性的觸媒特質。而需要酸鹼催化的乙醇轉化可以用來反應LaMnO3與LaFeO3擔載於二氧化矽前後鹼酸特質的改變。
在低轉化率的反應條件下,乙醇於未擔載之LaMnO3與LaFeO3上的主要轉化產物為鹼性觸媒催化的反向醇醛縮合反應 (Reverse-aldolization) 與 Tishchenko反應,而乙醇於二氧化矽擔載的LaMnO3與LaFeO3上的主要轉化產物為需要酸鹼性點共同催化的醇醛縮合反應(Aldolization) 與酸性催化的脫水反應 (Dehydration)。
 LaMnO3/SiO2 在醇醛縮合反應的活性優於LaFeO3/SiO2的主要的原因為存在於LaMnO3/SiO2表面的正四價錳離子與非晶格氧(nonstoichiometric oxygen) 形成對醇醛縮合反應具有催化活性的路易斯酸 (正四價錳離子) - 鹼 (非晶格氧) 對,而這樣的酸鹼對幾乎不存在於LaFeO3/SiO2,原因為LaFeO3/SiO2富含氧空缺的特性而造成表面非晶格氧的缺乏,因此我們推測除了正四價陽離子之外,非晶格氧的存在與否為另一個影響醇醛縮合反應活性的關鍵因素。
英文摘要 This study reports that the Lewis acid-base properties of peroskite-type LaMnO3 and LaFeO3 can be adjusted by immobilizing them on silica. Bulk LaMnO3 and LaFeO3 were strong base catalyst due to unsaturated-coordinated oxygen on the surface, While, after supported them on silica, the basic properties of bulk materials were diluted and simultaneously acidities improved due to the increased amounts of tetravalent B-site cations. Ethanol reactivity was performed to reflect the different acid-base properties of bulk and silica-supported LaMnO3 and LaFeO3. Under differential analysis conditions, bulk perovskites were active in base-catalyzed reactions such as reverse aldolization and Tishchenko reaction, while silica-supported perovskites were active in aldolization and dehydration. We also notice the higher aldolization activity over LaMnO3/SiO2 than that of LaFeO3/SiO2, the different activity was attributed to existence of excess mobile oxygen on the surface of LaMnO3/SiO2, forming aldolization-active Lewis acid (Mn4+)-base (nonstoichiometric oxygen) pair sites while these sites were absent in LaFeO3/SiO2 which was enriched with oxygen vacancies.
論文目次 摘要 i
英文延伸摘要 ii
誌謝 xi
目錄 xii
表目錄 xv
圖目錄 xv
第一章 前言 1
1.1引言 1
1.2研究動機 3
第二章 文獻回顧 4
2.1 乙醇轉化反應路徑 4
2.2 乙醇於異相觸媒轉化之探討 8
2.3 波洛斯凱特結構介紹及酸鹼性質 14
2.4 波洛斯凱特於乙醇轉化之研究 19
第三章 實驗儀器與實驗方法 21
3.1 X光繞射儀 21
3.2 比表面積與孔隙分佈分析儀 23
3.3 穿透式電子顯微鏡 25
3.4 感應耦合電將放射光譜儀 26
3.5 X線光電子能譜移 27
3.6 高性能全自動化學吸附儀 28
3.6.1 二氧化碳及氨氣程溫脫附 29
3.6.2 氫氣程溫還原 29
3.6.3 氧氣程溫脫附 30
3.6.4 乙醇程序升溫表面反應 30
3.7 傅立葉轉換紅外光譜儀 32
3.7.1 布朗斯特酸鑑定 33
3.7.2吡啶及二氧化碳吸附實驗 33
3.8 氣相層析儀 35
3.8.1 氣相產物定性與定量 38
3.9 實驗藥品與實驗設備 44
3.10 觸媒製備與合成 46
3.10.1 二氧化矽載體預處理 46
3.10.2 Bulk 波洛斯凱特合成 46
3.10.3 二氧化矽擔載波洛斯凱特合成 46
3.11 觸媒反應性測試 47
第四章 實驗結果與討論 48
4.1 觸媒物理性質鑑定 48
4.1.1 觸媒組成與命名 48
4.1.2 X-光繞射圖樣 48
4.1.3 比表面積與元素組成 49
4.1.4 高解析穿透式電子顯微影像 51
4.1.5 X-光光電子能譜分析 54
4.1.6 氫氣程溫還原測試 58
4.2 觸媒酸鹼性質鑑定 60
4.2.1 氨氣程溫脫附測試 60
4.2.2二氧化碳程溫脫附測試 61
4.2.3吡啶吸附紅外光譜分析 61
4.2.4二氧化碳吸附紅外光譜分析 63
4.2.5 異丙醇轉化測試 64
4.3 乙醇轉化之反應性測試 67
4.3.1乙醇程序升溫表面反應分析 68
4.3.2 觸媒乙醇轉化反應性分析 71
4.3.3 LaFe/SiO2缺氧之於醇醛縮合反應 79
第五章 結論 83
參考文獻 84
參考文獻 參考文獻

[1] S.a.t.P.N.N.L.P.a.t.N.R.E.L. (NREL), Top Value Added Chemicals From Biomass, Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (August 2004).
[2] BP Statistical Review of World Energy, bp.com/statisticalreview 6-18 (June 2012).
[3] R.R.E.P.N.f.t.s. Century), RENEWABLES 2018 GLOBAL STATUS REPORT, (2018).
[4] C. Angelici, B.M. Weckhuysen, P.C. Bruijnincx, Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals, ChemSusChem, 6 (2013) 1595-1614.
[5] M. León, E. Díaz, S. Ordóñez, Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites, Catalysis today, 164 (2011) 436-442.
[6] G. Tesquet, J. Faye, F. Hosoglu, A.-S. Mamede, F. Dumeignil, M. Capron, Ethanol reactivity over La1+x FeO3+δ perovskites, Applied Catalysis A: General, 511 (2016) 141-148.
[7] R.-K. Chen, T.-F. Yu, M.-X. Wu, T.-W. Tzeng, P.-W. Chung, Y.-C. Lin, The Aldolization Nature of Mn4+-Nonstoichiometric Oxygen Pair Sites of Perovskite-Type LaMnO3 in the Conversion of Ethanol, ACS Sustainable Chemistry & Engineering, (2018) 11949-11958.
[8] G. Pomalaza, M. Capron, V. Ordomsky, F. Dumeignil, Recent Breakthroughs in the Conversion of Ethanol to Butadiene, Catalysts, 6 (2016) 203.
[9] https://www.cairn.info/revue-responsabilite-et-environnement1-2014-4-page-38.htm
[10] C. Angelici, M.E.Z. Velthoen, B.M. Weckhuysen, P.C.A. Bruijnincx, Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials, Catalysis Science & Technology, 5 (2015) 2869-2879.
[11] M.J.L. Gines, E. Iglesia, Bifunctional Condensation Reactions of Alcohols on Basic Oxides Modified by Copper and Potassium, Journal of Catalysis, 176 (1998) 155-172.
[12] J. Bussi, S. Parodi, B. Irigaray, R. Kieffer, Catalytic transformation of ethanol into acetone using copper–pyrochlore catalysts, Applied Catalysis A: General, 172 (1998) 117-129.
[13] K. Inui, T. Kurabayashi, S. Sato, Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst, Applied Catalysis A: General, 237 (2002) 53-61.
[14] D. Varisli, T. Dogu, G. Dogu, Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts, Chemical Engineering Science, 62 (2007) 5349-5352.
[15] T. Kito-Borsa, D.A. Pacas, S. Selim, S.W. Cowley, Properties of an ethanol− diethyl ether− water fuel mixture for cold-start assistance of an ethanol-fueled vehicle, Industrial & engineering chemistry research, 37 (1998) 3366-3374.
[16] E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene, Chemical Society Reviews, 43 (2014) 7917-7953.
[17] V.L. Sushkevich, I.I. Ivanova, V.V. Ordomsky, E. Taarning, Design of a Metal‐Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol, ChemSusChem, 7 (2014) 2527-2536.
[18] K. Inui, T. Kurabayashi, S. Sato, Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst, Applied Catalysis A: General, 237 (2002) 53-61.
[19] P.C. Zonetti, J. Celnik, S. Letichevsky, A.B. Gaspar, L.G. Appel, Chemicals from ethanol–The dehydrogenative route of the ethyl acetate one-pot synthesis, Journal of Molecular Catalysis A: Chemical, 334 (2011) 29-34.
[20] C. Angelici, M.E. Velthoen, B.M. Weckhuysen, P.C. Bruijnincx, Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO 2–MgO materials, Catalysis Science & Technology, 5 (2015) 2869-2879.
[21] E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, A. Ishizaki, Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties, Process biochemistry, 37 (2001) 65-71.
[22] J. Di Cosimo, V. Dıez, M. Xu, E. Iglesia, C. Apesteguıa, Structure and surface and catalytic properties of Mg-Al basic oxides, Journal of Catalysis, 178 (1998) 499-510.
[23] C.P. Rodrigues, P.D.C. Zonetti, L.G. Appel, Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3, Chem Cent J, 11 (2017) 30.
[24] R. Selvin, G. Rajarajeswari, L.S. Roselin, V. Sadasivam, B. Sivasankar, K. Rengaraj, Catalytic decomposition of cumene hydroperoxide into phenol and acetone, Applied Catalysis A: General, 219 (2001) 125-129.
[25] T. Nakajima, K. Tanabe, T. Yamaguchi, I. Matsuzaki, S. Mishima, Conversion of ethanol to acetone over zinc oxide—calcium oxide catalyst optimization of catalyst preparation and reaction conditions and deduction of reaction mechanism, Applied catalysis, 52 (1989) 237-248.
[26] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials, 28 (2016) 284-292.
[27] M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides, Chemical reviews, 101 (2001) 1981-2018.
[28] M. Misono, Catalysis of perovskite and related mixed oxides, Studies in surface science and catalysis, Elsevier2013, pp. 67-95.
[29] H. Zhu, P. Zhang, S. Dai, Recent advances of lanthanum-based perovskite oxides for catalysis, ACS Catalysis, 5 (2015) 6370-6385.
[30] S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality, Chemical reviews, 114 (2014) 10292-10368.
[31] M. Yahia, H. Batis, Properties of Undoped and Ca‐Doped LaMnO3− Non‐Stoichiometry and Defect Structure, European Journal of Inorganic Chemistry, 2003 (2003) 2486-2494.
[32] J. Van Roosmalen, E. Cordfunke, R. Helmholdt, H. Zandbergen, The defect chemistry of LaMnO3±δ: 2. Structural aspects of LaMnO3+ δ, Journal of Solid State Chemistry, 110 (1994) 100-105.
[33] J. Töpfer, J. Goodenough, LaMnO3+ δRevisited, Journal of Solid State Chemistry, 130 (1997) 117-128.
[34] C. Chu, Y. Zhao, S. Li, Y. Sun, Correlation between the acid–base properties of the La 2 O 3 catalyst and its methane reactivity, Physical Chemistry Chemical Physics, 18 (2016) 16509-16517.
[35] A.Y. Kapran, S. Solov'ev, V. Vlasenko, Chemisorption and oxidative decomposition of pyridine on hydrated manganese dioxide, Theoretical and Experimental Chemistry, 36 (2000) 94-97.
[36] V. Fung, F. Polo-Garzon, Z. Wu, D.-e. Jiang, Exploring perovskites for methane activation from first principles, Catalysis Science & Technology, 8 (2018) 702-709.
[37] E. Cao, Y. Yang, T. Cui, Y. Zhang, W. Hao, L. Sun, H. Peng, X. Deng, Effect of synthesis route on electrical and ethanol sensing characteristics for LaFeO3-δ nanoparticles by citric sol-gel method, Applied Surface Science, 393 (2017) 134-143.
[38] Y. Cong, Z. Geng, Y. Sun, L. Yuan, X. Wang, X. Zhang, L. Wang, W. Zhang, K. Huang, S. Feng, Cation Segregation of A-Site Deficiency Perovskite La0.85FeO3-delta Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li-O2 Battery, ACS Appl Mater Interfaces, 10 (2018) 25465-25472.
[39] Y.-G. Cho, K.-H. Choi, Y.-R. Kim, J.-S. Jung, S.-H. Lee, Characterization and catalytic properties of surface La-rich LaFeO 3 perovskite, Bulletin of the Korean Chemical Society, 30 (2009) 1368-1372.
[40] M. Daturi, G. Busca, R.J. Willey, Surface and structure characterization of some perovskite-type powders to be used as combustion catalysts, Chemistry of Materials, 7 (1995) 2115-2126.
[41] G.S. Foo, Z.D. Hood, Z. Wu, Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO3 Nanocrystals, ACS Catalysis, 8 (2017) 555-565.
[42] F. Deganello, G. Marcì, G. Deganello, Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach, Journal of the European Ceramic Society, 29 (2009) 439-450.
[43] C. Zhang, C. Wang, W. Zhan, Y. Guo, Y. Guo, G. Lu, A. Baylet, A. Giroir-Fendler, Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts, Applied Catalysis B: Environmental, 129 (2013) 509-516.
[44] F.A. Armstrong, Why did Nature choose manganese to make oxygen?, Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (2007) 1263-1270.
[45] F.D. Romero, Y. Shimakawa, Charge transitions in perovskite oxides containing unusually high-valent Fe, Chemical communications, 55 (2019) 3690-3696.
[46] B. Kucharczyk, W. Tylus, Metallic monolith supported LaMnO 3 perovskite-based catalysts in methane combustion, Catalysis letters, 115 (2007) 122-132.
[47] K. Bolwin, W. Schnurnberger, G. Schiller, Influence of valence band states on the core hole screening in lanthanide perovskite compounds, Zeitschrift für Physik B Condensed Matter, 72 (1988) 203-209.
[48] Y. Noboru, T. Yasutake, S. Tetsuro, Chem. Lett., 10 (1981) 1767-1770.
[49] J.L.G. Fierro, L.G. Tejuca, Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS, Applied Surface Science, 27 (1987) 453-457.
[50] P. Xiao, L. Zhong, J. Zhu, J. Hong, J. Li, H. Li, Y. Zhu, CO and soot oxidation over macroporous perovskite LaFeO3, Catalysis Today, 258 (2015) 660-667.
[51] I. Rivas, J. Alvarez, E. Pietri, M.J. Pérez-Zurita, M.R. Goldwasser, Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host, Catalysis Today, 149 (2010) 388-393.
[52] R. Zhang, P. Li, N. Liu, W. Yue, B. Chen, Effect of hard-template residues of the nanocasted mesoporous LaFeO 3 with extremely high surface areas on catalytic behaviors for methyl chloride oxidation, Journal of Materials Chemistry A, 2 (2014) 17329-17340.
[53] E.V. Makshina, S.V. Sirotin, M.W.E. van den Berg, K.V. Klementiev, V.V. Yushchenko, G.N. Mazo, W. Grünert, B.V. Romanovsky, Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves, Applied Catalysis A: General, 312 (2006) 59-66.
[54] R. Ferwerda, J.H. van der Maas, F.B. van Duijneveldt, Pyridine adsorption onto metal oxides: an ab initio study of model systems, Journal of Molecular Catalysis A: Chemical, 104 (1996) 319-328.
[55] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190 (2001) 261-274.
[56] J. Li, R. Wang, J. Hao, Role of Lattice Oxygen and Lewis Acid on Ethanol Oxidation over OMS-2 Catalyst, The Journal of Physical Chemistry C, 114 (2010) 10544-10550.
[57] C.A. Emeis, Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, Journal of Catalysis, 141 (1993) 347-354.
[58] C. Morterra, G. Ghiotti, F. Boccuzi, S. Coluccia, An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel, Journal of Catalysis, 51 (1978) 299-313.
[59] R. Philipp, K. Fujimoto, FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts, The Journal of Physical Chemistry, 96 (1992) 9035-9038.
[60] A. Gervasini, G. Bellussi, J. Fenyvesi, A. Auroux, Microcalorimetric and Catalytic Studies of the Acidic Character of Modified Metal Oxide Surfaces. 1. Doping Ions on Alumina, Magnesia, and Silica, The Journal of Physical Chemistry, 99 (1995) 5117-5125.
[61] A. Gervasini, J. Fenyvesi, A. Auroux, Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition, Catalysis Letters, 43 (1997) 219-228.
[62] F. Polo-Garzon, Z. Wu, Acid–base catalysis over perovskites: a review, Journal of Materials Chemistry A, 6 (2018) 2877-2894.
[63] N. Yi, Y. Cao, Y. Su, W.-L. Dai, H.-Y. He, K.-N. Fan, Nanocrystalline LaCoO3 perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation, Journal of Catalysis, 230 (2005) 249-253.
[64] J. Sun, A.M. Karim, D. Mei, M. Engelhard, X. Bao, Y. Wang, New insights into reaction mechanisms of ethanol steam reforming on Co–ZrO2, Applied Catalysis B: Environmental, 162 (2015) 141-148.
[65] C. Wang, G. Garbarino, L.F. Allard, F. Wilson, G. Busca, M. Flytzani-Stephanopoulos, Low-Temperature Dehydrogenation of Ethanol on Atomically Dispersed Gold Supported on ZnZrOx, ACS Catalysis, 6 (2016) 210-218.
[66] K. Conder, E. Pomjakushina, A. Soldatov, E. Mitberg, Oxygen content determination in perovskite-type cobaltates, Materials Research Bulletin, 40 (2005) 257-263.
[67] Y. Wang, L. Chen, H. Cao, Z. Chi, C. Chen, X. Duan, Y. Xie, F. Qi, W. Song, J. Liu, S. Wang, Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination, Applied Catalysis B: Environmental, 245 (2019) 546-554.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw